参考文献 (1) Golbe, LI 和 Ohman-Strickland, PA 进行性核上性麻痹的临床评定量表。Brain 130, 1552-1565 (2007)。 (2) Dam, T. 等人。单克隆抗 tau 抗体 Gosuranemab 在进行性核上性麻痹中的安全性和有效性:PASSPORT 试验。Nat Medicine X, XX (2021)。 (3) Hoglinger, GU 等人。tilavonemab 在进行性核上性麻痹中的安全性和有效性:一项 2 期随机安慰剂对照试验。Lancet Neurology 20, 182-192 (2021)。 (4) Jadhav, S. 等人。tau 治疗策略概述。Acta Neuropathol Commun. 7, 22 (2019)。 (5) Sopko, R. 等人。 gosuranemab 表征 tau 结合。Neurobiol Dis。146, 105120 (2020)。(6) Yanamandra, K., 等人。抗 tau 抗体可降低不溶性 tau 并减少脑萎缩。Ann Clin Transl Neurol。2, 278-288 (2015)。(7) Kim, B., 等人。Tau 免疫疗法与 FTLD-tau 中的神经胶质反应有关。Acta Neuropathol。doi:10.1007/s00401-021-02318-y。提前在线 (2021)。(8) Jabbari, E., 等人。TRIM11 基因座的变异改变了进行性核上性麻痹表型。Ann Neurol。84, 485-496 (2018)。 (9) Biogen 在阿尔茨海默氏症试验阴性后暂停 Gosuranemab 的治疗。https://www.alzforum.org/news/research-news/biogen-shelves-gosuranemab-after-negative- alzheimers-trial (2021)。(10) Jabbari, E., 等人。进行性核上性麻痹生存的遗传决定因素:全基因组关联研究。柳叶刀神经病学 20, 107-116 (2021)。(11) Evans LD、Strano A、Campbell A 等人。全基因组 CRISPR 筛选确定 LRRK2 调节的内吞作用是人类神经元摄取细胞外 tau 的主要机制。预印本网址为 https://www.biorxiv.org/content/10.1101/2020.08.11.246363v1 (2020)。 (12)Myeku,N.,等人。Tau 驱动的 26S 蛋白酶体损伤和认知功能障碍可能是
摘要。神经疾病给患者和家庭带来的生活质量损害。最反复出现的症状干扰语音,吞咽甚至简单的动作。这些症状已有几年的治疗通常会引起副作用,因此,有必要寻找没有给患者的生活带来太多不适的新疗法,并且可以被认为是安全有效的。肉毒杆菌毒素是一种神经毒素,可以通过抑制乙酰胆碱在神经系统中进行分类,可以分类。它最初是用于进行斜视治疗的行为,但在美学中变得流行。在这篇综述中,我们试图了解肉毒杆菌毒素在治疗神经系统疾病中复发症状方面的机制,旨在了解其治疗意义。For this exploratory bibliographic research, information obtained in the PubMed, Lilacs, Scielo, Capes, BVS, Cochrane Library was used, with studies published between 2013 and 2023 being among the descriptors “Botulinum Toxin”, “Sialorrea”, “Neurodegenerative Diseases”, “Dystonia” and “Spasticity”. 文章用葡萄牙,英语和西班牙语的文章进行了评估。 今天,多学科,是各种治疗方法的发现,是神经系统疾病主要症状的主角,例如肌张力障碍,痉挛和Syalorrhea。 与其他方法相比,获得的结果对使用肉毒杆菌毒素是有益的。For this exploratory bibliographic research, information obtained in the PubMed, Lilacs, Scielo, Capes, BVS, Cochrane Library was used, with studies published between 2013 and 2023 being among the descriptors “Botulinum Toxin”, “Sialorrea”, “Neurodegenerative Diseases”, “Dystonia” and “Spasticity”.文章用葡萄牙,英语和西班牙语的文章进行了评估。今天,多学科,是各种治疗方法的发现,是神经系统疾病主要症状的主角,例如肌张力障碍,痉挛和Syalorrhea。与其他方法相比,获得的结果对使用肉毒杆菌毒素是有益的。被评估的人中只有两篇文章引用了其长期使用的关注,因为这种附录得出了对长期使用和专业培训的研究。被评估的人中只有两篇文章引用了其长期使用的关注,因为这种附录得出了对长期使用和专业培训的研究。
目的:床边无反应的脑损伤患者(即,营养状态/无反应性的觉醒综合征 - VS/UWS)可能会表现出与最低意识状态(MCS)中患者相似的大脑活动。这种特殊的条件被称为“非行为MCS”或“ MCS *”。在本研究中,我们旨在研究MCS *患者的大脑特征和潜在的大脑特征。方法:脑18 F-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)是在长期VS/UWS(n = 48)或MC(n = 87)中诊断出的135名脑损伤患者(fdg-pet)。从现有的数据库中,额叶网络中的相对代谢前景(用标准化摄取值测量)由三名专家进行视觉检查。额叶网络缺乏代谢的患者被标记为“ VS/UWS”,而其(部分)保留的患者要么确认了“ MCS”的行为诊断,要么在没有意识的行为迹象的情况下,表明对“ MCS *”的诊断表明。在1年随访,功能连通性,灰质萎缩和区域脑代谢模式的临床结果(VS/UWS,MCS *和MCS)中进行了研究。结果:67%的行为与/UWS呈现了脑代谢的部分保存(即MCS *)。与VS/UWS患者相比,MCS *患者表现出更好的结果,全球功能连通性和灰质的前景与MCS的诊断更兼容。与MCS患者相比, MCS *患者在后脑区域中呈现较低的脑代谢。 Ann Neurol 2021; 90:89 - 100MCS *患者在后脑区域中呈现较低的脑代谢。Ann Neurol 2021; 90:89 - 100解释:MCS *是一种常见现象,与诊断VS/UWS的诊断相比,与更好的预后和更好的大脑保存相关。在做出医疗决定之前,应向所有反应迟钝的患者提供互补考试。
目的:床边无反应的脑损伤患者(即,营养状态/无反应性的觉醒综合征 - VS/UWS)可能会表现出与最低意识状态(MCS)中患者相似的大脑活动。这种特殊的条件被称为“非行为MCS”或“ MCS *”。在本研究中,我们旨在研究MCS *患者的大脑特征和潜在的大脑特征。方法:脑18 F-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)是在长期VS/UWS(n = 48)或MC(n = 87)中诊断出的135名脑损伤患者(fdg-pet)。从现有的数据库中,额叶网络中的相对代谢前景(用标准化摄取值测量)由三名专家进行视觉检查。额叶网络缺乏代谢的患者被标记为“ VS/UWS”,而其(部分)保留的患者要么确认了“ MCS”的行为诊断,要么在没有意识的行为迹象的情况下,表明对“ MCS *”的诊断表明。在1年随访,功能连通性,灰质萎缩和区域脑代谢模式的临床结果(VS/UWS,MCS *和MCS)中进行了研究。结果:67%的行为与/UWS呈现了脑代谢的部分保存(即MCS *)。与VS/UWS患者相比,MCS *患者表现出更好的结果,全球功能连通性和灰质的前景与MCS的诊断更兼容。与MCS患者相比, MCS *患者在后脑区域中呈现较低的脑代谢。 Ann Neurol 2021; 00:1 - 12MCS *患者在后脑区域中呈现较低的脑代谢。Ann Neurol 2021; 00:1 - 12解释:MCS *是一种常见现象,与诊断VS/UWS的诊断相比,与更好的预后和更好的大脑保存相关。在做出医疗决定之前,应向所有反应迟钝的患者提供互补考试。
1。Feigin VL,Vos T,Nichols E等。全球神经系统疾病的负担:将证据转化为政策。柳叶刀神经。2020; 19(3):255-265。2。Vigo D,Thornicroft G,AtunR。估计精神疾病的真正全球负担。柳叶刀精神病学。2016; 3(2):171-178。 3。 Deuschl G,Beghi E,Fazekas F等。 欧洲神经系统疾病的负担:2017年全球疾病负担研究的分析。 柳叶刀公共卫生。 2020; 5(10):E551-E567。 4。 Olesen J,Gustavsson A,Svensson M等。 欧洲脑疾病的经济成本。 EUR J NEUROL。 2012; 19(1):155-162。 5。 Wittchen Hu,Jacobi F,Rehm J等。 2010年欧洲大脑的精神障碍和其他疾病的大小和负担。 EUR神经心理药物。 2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2016; 3(2):171-178。3。Deuschl G,Beghi E,Fazekas F等。欧洲神经系统疾病的负担:2017年全球疾病负担研究的分析。柳叶刀公共卫生。2020; 5(10):E551-E567。 4。 Olesen J,Gustavsson A,Svensson M等。 欧洲脑疾病的经济成本。 EUR J NEUROL。 2012; 19(1):155-162。 5。 Wittchen Hu,Jacobi F,Rehm J等。 2010年欧洲大脑的精神障碍和其他疾病的大小和负担。 EUR神经心理药物。 2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2020; 5(10):E551-E567。4。Olesen J,Gustavsson A,Svensson M等。 欧洲脑疾病的经济成本。 EUR J NEUROL。 2012; 19(1):155-162。 5。 Wittchen Hu,Jacobi F,Rehm J等。 2010年欧洲大脑的精神障碍和其他疾病的大小和负担。 EUR神经心理药物。 2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。Olesen J,Gustavsson A,Svensson M等。欧洲脑疾病的经济成本。EUR J NEUROL。2012; 19(1):155-162。5。Wittchen Hu,Jacobi F,Rehm J等。2010年欧洲大脑的精神障碍和其他疾病的大小和负担。EUR神经心理药物。2011; 21(9):655-679。 6。 神经系统疾病:公共卫生挑战。 世界卫生组织,2006年。 SBN 978 92 4 156336 9。 7。 Dodart JC,Mathis C,Bales KR,Paul SM。 我的老鼠患有阿尔茨海默氏病? 基因脑行为。 2002; 1(3):142-155。 8。 Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。 炎症药理学。 2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2011; 21(9):655-679。6。神经系统疾病:公共卫生挑战。世界卫生组织,2006年。SBN 978 92 4 156336 9。7。Dodart JC,Mathis C,Bales KR,Paul SM。我的老鼠患有阿尔茨海默氏病?基因脑行为。2002; 1(3):142-155。8。Bolton C.药物疗效从体内模型转化为人类疾病,特别提及实验性自身免疫性脑脊髓炎和多发性硬化症。炎症药理学。2007; 15(5):183-187。 9。 Lassmann H.多发性硬化症的实验模型。2007; 15(5):183-187。9。Lassmann H.多发性硬化症的实验模型。Rev Neurol(巴黎)。2007; 163(6-7):651-655。 10。 langui D,Lachapelle F,Duyckaerts C.神经退行性疾病的动物模型。 Med Sci(巴黎)。 2007; 23(2):180-186。 11。 Mackenzie IR,Bigio EH,Ince PG等。 病理TDP-43分裂 - 散发性肌萎缩性侧索硬化症来自肌萎缩性lateral骨硬化,并带有SOD1突变。 Ann Neurol。 2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 163(6-7):651-655。10。langui D,Lachapelle F,Duyckaerts C.神经退行性疾病的动物模型。Med Sci(巴黎)。2007; 23(2):180-186。 11。 Mackenzie IR,Bigio EH,Ince PG等。 病理TDP-43分裂 - 散发性肌萎缩性侧索硬化症来自肌萎缩性lateral骨硬化,并带有SOD1突变。 Ann Neurol。 2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 23(2):180-186。11。Mackenzie IR,Bigio EH,Ince PG等。病理TDP-43分裂 - 散发性肌萎缩性侧索硬化症来自肌萎缩性lateral骨硬化,并带有SOD1突变。Ann Neurol。 2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。Ann Neurol。2007; 61(5):427-434。 12。 Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 61(5):427-434。12。Robertson J,Sanelli T,Xiao S等。 突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。 Neurosci Lett。 2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。Robertson J,Sanelli T,Xiao S等。突变SOD1转基因小鼠中缺乏TDP-43异常表现出与ALS的差异。Neurosci Lett。2007; 420(2):128-132。 13。 Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。 acta neuro-pathol。 2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2007; 420(2):128-132。13。Duyckaerts C,Potier MC,Delatour B.阿尔茨海默氏病模型和人类神经病理学:相似性和差异。acta neuro-pathol。2008; 115(1):5-38。 14。 Howlett DR,Richardson JC。 App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达? 组醇组织性疾病。 2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2008; 115(1):5-38。14。Howlett DR,Richardson JC。App转基因小鼠的病理学:阿尔茨海默氏病的模型还是APP的过度表达?组醇组织性疾病。2009; 24(1):83-100。 15。 Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。 多发性硬化症的致病机制和实验模型。 自动城市。 2010; 43(7):504-513。 16。 Swarup V,Julien JP。 ALS发病机理:遗传学和小鼠模型的最新见解。 Prog神经心理药物精神病学。 2011; 35(2):363-369。 17。 否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I. 病理生理学。 18。2009; 24(1):83-100。15。Slavin A,Kelly-Modis L,Labadia M,Ryan K,Brown ML。多发性硬化症的致病机制和实验模型。自动城市。2010; 43(7):504-513。16。Swarup V,Julien JP。ALS发病机理:遗传学和小鼠模型的最新见解。Prog神经心理药物精神病学。2011; 35(2):363-369。17。否认A,Johnson AJ,Bieber AJ,Warrington AE,Rodriguez M,Pirko I.病理生理学。18。动物模型在多发性硬化症研究中的相关性。2011; 18(1):21-29。Franco Bocanegra DK,Nicoll Jar,BocheD。阿尔茨海默氏病的先天免疫力:动物模型的相关性?j神经传输(维也纳)。2018; 125(5):827-846。 19。 Biegon A,Fry PA,Paden CM,Alexandrovich A,Tsenter J,Shohami E.小鼠闭合头部损伤后N-甲基 - d-大冬型受体的动态变化:对治疗神经和认知缺陷的影响。 Proc Natl Acad Sci u s a。 2004; 101(14):5117-5122。 20。 Boche D,Perry VH,Nicoll JA。 审查:小胶质细胞的激活模式及其在人脑中的鉴定。 神经性疾病Appl Neurobiol。 2013; 39(1):3-18。 21。 Gerdes MJ,Sevinsky CJ,Sood A等。 高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。 Proc Natl Acad Sci u s a。 2013; 110(29):11982-11987。2018; 125(5):827-846。19。Biegon A,Fry PA,Paden CM,Alexandrovich A,Tsenter J,Shohami E.小鼠闭合头部损伤后N-甲基 - d-大冬型受体的动态变化:对治疗神经和认知缺陷的影响。Proc Natl Acad Sci u s a。2004; 101(14):5117-5122。20。Boche D,Perry VH,Nicoll JA。 审查:小胶质细胞的激活模式及其在人脑中的鉴定。 神经性疾病Appl Neurobiol。 2013; 39(1):3-18。 21。 Gerdes MJ,Sevinsky CJ,Sood A等。 高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。 Proc Natl Acad Sci u s a。 2013; 110(29):11982-11987。Boche D,Perry VH,Nicoll JA。审查:小胶质细胞的激活模式及其在人脑中的鉴定。神经性疾病Appl Neurobiol。2013; 39(1):3-18。 21。 Gerdes MJ,Sevinsky CJ,Sood A等。 高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。 Proc Natl Acad Sci u s a。 2013; 110(29):11982-11987。2013; 39(1):3-18。21。Gerdes MJ,Sevinsky CJ,Sood A等。高度多重的单细胞分析,对福尔马林固定,石蜡包裹的癌组织。Proc Natl Acad Sci u s a。2013; 110(29):11982-11987。2013; 110(29):11982-11987。
摘要 精神药物被广泛用于治疗精神障碍,其普及率日益提高,并在精神障碍的治疗中发挥着重要作用。然而,这些药物对身体的影响各不相同,特别是在分子水平上,影响DNA甲基化(DNAm),这是调节基因表达和关键神经过程的重要表观遗传过程。因此,本文献综述研究旨在分析精神药物对表观遗传过程的影响,重点关注 DNAm。使用与该主题相关的关键词组合在 PubMed、ScienceDirect 和虚拟健康图书馆 (BVS) 数据库中搜索文章,总共搜索到 13 篇科学出版物来撰写这篇评论。结果表明,精神药物影响大脑和外周组织中的DNAm和基因表达。因此,精神药物似乎在表观遗传调节中发挥着重要作用,并有可能影响神经健康和精神障碍的治疗。关键词:DNA甲基化。精神药物。使用药物。知识领域:分子生物学。介绍
儿童脑瘫(PC)是影响儿童时期的最常见和最困难的神经系统疾病之一。目的:本研究旨在检查治疗PC的障碍和进展。方法:使用PubMed,Scopus和Scielo数据库的出版物进行了书目分析。在2019年至2024年之间考虑了有关脑瘫的挑战和进步,在2019年至2024年之间考虑了英语和葡萄牙语的原始文章和系统修订。选择了14篇文章以实现这一书目分析。结果和辩论:已经证明了PC的临床方面的个性化方法的相关性。此外,考虑到患者的临床状况种类繁多,这对于个性化PC的治疗至关重要。对神经可塑性的越来越多的理解表明,专注于大脑适应的策略可能是必不可少的,并且考虑道德和实际方面,应以平衡的方式进行辅助技术。结论:在有力的证据支持下,不断寻找有效的治疗方法是朝着对这种复杂的神经系统状况更有效和富有同情心的管理的基础。
修道院:attr和淀粉样蛋白; attr-cm,具有心肌病的attr; hattr,atter继承; hattr-pn,多神经病; Ole,开放标签扩展; RNAi,干扰RNA; TTR,经硫代蛋白; wttr,attr Wild。参考:1。Ruberg和Al。 J Long Cold Coldio 2019; 73:2872–92; 2。 Maurer和Al J Long Cold Cardio 2016; 68:161–72; 3。 Adams和Al。 nat Rev Neurol 2019; 15:387–404; 4。 Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Ruberg和Al。J Long Cold Coldio 2019; 73:2872–92; 2。Maurer和Al J Long Cold Cardio 2016; 68:161–72; 3。 Adams和Al。 nat Rev Neurol 2019; 15:387–404; 4。 Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Maurer和AlJ Long Cold Cardio 2016; 68:161–72; 3。Adams和Al。 nat Rev Neurol 2019; 15:387–404; 4。 Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Adams和Al。nat Rev Neurol 2019; 15:387–404; 4。Castan和Al。 失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Castan和Al。失败Rev 2015; 20:163–78; 5。 编织和Al。 心脏失败24:1700–12; 6。 车道和Al。 循环2019; 140:16–26; 7。 nativate-nicalu和al。 心脏失败2021; 8:3875–84; 8。 Gillmore和Al。 我们的心J 2018; 39:299–806; 9。 Coelho和Al。 Curr幸福2013; 29:63–76; 10。 Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。失败Rev 2015; 20:163–78; 5。编织和Al。心脏失败24:1700–12; 6。车道和Al。循环2019; 140:16–26; 7。nativate-nicalu和al。心脏失败2021; 8:3875–84; 8。Gillmore和Al。我们的心J 2018; 39:299–806; 9。Coelho和Al。Curr幸福2013; 29:63–76; 10。Adams和Al。 n参与JMS 2018; 379:11-21; 11。 Maurer和Al。 n Engl J Med 2023; 389:1553–65。Adams和Al。n参与JMS 2018; 379:11-21; 11。Maurer和Al。n Engl J Med 2023; 389:1553–65。
1。全球对痴呆症2017- 2025年公共卫生响应的行动计划。世界卫生组织; 2017。许可证:CC BY-NC-SA 3.0 Igo。2。Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。 018。 3。 PalmQvist S,Insel PS,Stomrud E等。 脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。 embo mol Med。 2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈Jack CR,Bennett DA,Blennow K等。NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。阿尔茨海默氏症痴呆症。2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。 018。 3。 PalmQvist S,Insel PS,Stomrud E等。 脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。 embo mol Med。 2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。018。3。PalmQvist S,Insel PS,Stomrud E等。脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。embo mol Med。2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈2019; 11:E11170。4。lleóA,Irwin DJ,Illán-Gala I等。一种2步脑脊算法,用于选择额颞叶变性亚型。JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈JAMA NEUROL。2018; 75:738-745。5。de Meyer S,Schaeverbeke JM,Verberk IMW等。比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。阿尔茨海默氏症。2020; 12:162。6。Chatterjee P,Pedrini S,Stoops E等。血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。翻译精神病学。2021; 11。7。Verberk IMW,Thijssen E,Koelewijn J等。血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈
1国立卫生研究院:美国国家医学图书馆。Helios-B:一项研究,用于评估心肌病经性淀粉样蛋白病患者的vutrisiran。https://clinicaltrials.gov/ct2/show/nct04153149。2023年5月10日访问。2国立卫生研究院:美国国家医学图书馆。 Helios-A:对遗传性经性淀粉样变性(HATTR淀粉样变性)患者的vutrisiran(ALN-TTRSC02)研究。 https://clinicaltrials.gov/ct2/show/nct03759379。 2023年5月10日访问。 3 Adams D,Tournev IL,Taylor MS等。 淀粉样蛋白。 2023; 30(1):18-26。 4 Adams D,Gonzalez-Duarte A,O'Riordan WD等。 n Engl J Med。 2018; 378(27):11-21。 5 Obici L,Berk J,Gonzalez-Duarte A等。 淀粉样蛋白。 2020; 27(3):153-162。 6 Vinik E,Hayes R,Oglesby A等。 糖尿病技术。 2005; 7(3):497-508。 7 Vinik E,Vinik A,Paulson J等。 J外围神经系统。 2014; 19(2):104-114。 8 Palmer E. Cinahl信息系统。 2015:1-6。 9 Dyck P,Gonzalez-Duarte A,Obici L等。 J Neurol Sci。 2019; 405 116424:1-8。 10 Suhr O,Danielsson A. J Intern Med。 1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。2国立卫生研究院:美国国家医学图书馆。Helios-A:对遗传性经性淀粉样变性(HATTR淀粉样变性)患者的vutrisiran(ALN-TTRSC02)研究。https://clinicaltrials.gov/ct2/show/nct03759379。2023年5月10日访问。3 Adams D,Tournev IL,Taylor MS等。淀粉样蛋白。2023; 30(1):18-26。4 Adams D,Gonzalez-Duarte A,O'Riordan WD等。n Engl J Med。2018; 378(27):11-21。 5 Obici L,Berk J,Gonzalez-Duarte A等。 淀粉样蛋白。 2020; 27(3):153-162。 6 Vinik E,Hayes R,Oglesby A等。 糖尿病技术。 2005; 7(3):497-508。 7 Vinik E,Vinik A,Paulson J等。 J外围神经系统。 2014; 19(2):104-114。 8 Palmer E. Cinahl信息系统。 2015:1-6。 9 Dyck P,Gonzalez-Duarte A,Obici L等。 J Neurol Sci。 2019; 405 116424:1-8。 10 Suhr O,Danielsson A. J Intern Med。 1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。2018; 378(27):11-21。5 Obici L,Berk J,Gonzalez-Duarte A等。 淀粉样蛋白。 2020; 27(3):153-162。 6 Vinik E,Hayes R,Oglesby A等。 糖尿病技术。 2005; 7(3):497-508。 7 Vinik E,Vinik A,Paulson J等。 J外围神经系统。 2014; 19(2):104-114。 8 Palmer E. Cinahl信息系统。 2015:1-6。 9 Dyck P,Gonzalez-Duarte A,Obici L等。 J Neurol Sci。 2019; 405 116424:1-8。 10 Suhr O,Danielsson A. J Intern Med。 1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。5 Obici L,Berk J,Gonzalez-Duarte A等。淀粉样蛋白。2020; 27(3):153-162。6 Vinik E,Hayes R,Oglesby A等。糖尿病技术。2005; 7(3):497-508。 7 Vinik E,Vinik A,Paulson J等。 J外围神经系统。 2014; 19(2):104-114。 8 Palmer E. Cinahl信息系统。 2015:1-6。 9 Dyck P,Gonzalez-Duarte A,Obici L等。 J Neurol Sci。 2019; 405 116424:1-8。 10 Suhr O,Danielsson A. J Intern Med。 1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。2005; 7(3):497-508。7 Vinik E,Vinik A,Paulson J等。J外围神经系统。2014; 19(2):104-114。 8 Palmer E. Cinahl信息系统。 2015:1-6。 9 Dyck P,Gonzalez-Duarte A,Obici L等。 J Neurol Sci。 2019; 405 116424:1-8。 10 Suhr O,Danielsson A. J Intern Med。 1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。2014; 19(2):104-114。8 Palmer E. Cinahl信息系统。2015:1-6。 9 Dyck P,Gonzalez-Duarte A,Obici L等。 J Neurol Sci。 2019; 405 116424:1-8。 10 Suhr O,Danielsson A. J Intern Med。 1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。2015:1-6。9 Dyck P,Gonzalez-Duarte A,Obici L等。J Neurol Sci。2019; 405 116424:1-8。 10 Suhr O,Danielsson A. J Intern Med。 1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。2019; 405 116424:1-8。10 Suhr O,Danielsson A. J Intern Med。1994; 235:479-485。 11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。1994; 235:479-485。11 Van Nes S,Vanhoutte E,Van Doorn P等。 神经病学。 2011; 76:337–345。 12 Vita G,Stancanelli C,Gentile L等。 神经肌肉疾病。 2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。11 Van Nes S,Vanhoutte E,Van Doorn P等。神经病学。2011; 76:337–345。12 Vita G,Stancanelli C,Gentile L等。神经肌肉疾病。2019; 29:213-220。 13所罗门S,亚当斯D,克里斯汀A等。 循环。2019; 29:213-220。13所罗门S,亚当斯D,克里斯汀A等。循环。2019; 139:431-449。 div>