• 神经形态设备试图模仿大脑的结构和动态,以复制其在计算能力、稳健学习和能源效率方面的标志性功能能力 • 它使用电子电路或使用专门的数字系统模拟神经元膜动态的真实模拟 • 一些应用:语音识别、字符识别、语法建模、噪声建模以及混沌时间序列的生成和预测 • 与传统处理器不同,神经形态芯片节能且完全并行化 • 通过共置处理器和内存解决冯·诺依曼瓶颈
摘要 — 神经形态计算利用时间数据的稀疏性,通过在每个时间步骤激活一小部分神经元和突触来降低处理能量。当部署用于边缘系统中的分割计算时,远程神经形态处理单元 (NPU) 可以通过使用稀疏脉冲无线电 (IR) 波形进行异步通信来降低通信功率预算。这样,输入信号稀疏性直接转化为计算和通信方面的节能。然而,对于红外传输,总能耗的主要贡献者仍然是维持主无线电开启所需的功率。这项工作提出了一种新颖的架构,将唤醒无线电机制集成到由远程、无线连接的 NPU 组成的分割计算系统中。基于唤醒无线电的神经形态分割计算系统设计的一个关键挑战是选择用于感知、唤醒信号检测和决策的阈值。为了解决这个问题,作为第二项贡献,本研究提出了一种新颖的方法,该方法利用物理系统的数字孪生 (DT)(即模拟器)以及称为“先学习后测试 (LTT)”的顺序统计测试方法,提供理论上的可靠性保证。所提出的 DT-LTT 方法广泛适用于其他设计问题,并在此展示了神经形态通信。实验结果验证了设计和分析,证实了理论上的可靠性保证,并说明了可靠性、能耗和决策信息量之间的权衡。
在许多神经形态工作流程中,模拟器在重要任务中发挥着至关重要的作用,例如训练脉冲神经网络、运行神经科学模拟以及设计、实施和测试神经形态算法。当前可用的模拟器适用于神经科学工作流程(例如 NEST 和 Brian2)或深度学习工作流程(例如 BindsNET)。问题是,基于神经科学的模拟器速度慢且可扩展性不强,而基于深度学习的模拟器不支持神经形态工作负载的某些典型功能(例如突触延迟)。在本文中,我们解决了文献中的这一空白,并提出了 SuperNeuro,这是一种快速且可扩展的神经形态计算模拟器,能够进行同质和异构模拟以及 GPU 加速。我们还提供了初步结果,将 SuperNeuro 与广泛使用的神经形态模拟器(如 NEST、Brian2 和 BindsNET)在计算时间方面进行了比较。我们证明,对于小型稀疏网络,SuperNeuro 比其他一些模拟器快约 10 × –300 倍。对于大型稀疏网络和大型密集网络,SuperNeuro 比其他模拟器分别快约 2.2 × –3.4 倍。
摘要:神经形态计算有望成为低功率AI应用中的未来标准。新的神经形态硬件与传统微控制器之间的集成是一个开放的挑战。在本文中,我们提出了一个接口板和一个通信协议,该协议允许使用中间的微控制器单元(Arduino Push)在不同设备之间进行通信。我们的紧凑型印刷电路板(PCB)将不同的设备链接到整个系统,并使用电池作为电源为整个系统提供电源。具体而言,我们已经连接了一个动态视觉传感器(DVS128),大三角器板和伺服电动机,为由尖峰神经网络控制的神经形态机器人系统创建了平台,该平台在拦截传入对象的任务上证明了这一点。实现的接口板的数据速率为24.64 K符号/s,生成命令的延迟约为11ms。完整的系统仅由电池运行,非常适合机器人应用。
从历史上看,记忆技术已根据其存储密度,成本和潜伏期进行了评估。除了这些指标之外,在低区域和能源成本中启用更智能和智能的计算平台的需求带来了有趣的途径,以利用非挥发性记忆(NVM)技术。在本文中,我们专注于非易失性记忆技术及其在生物启发的神经形态计算中的应用,从而实现了基于尖峰的机器智能。与先进的连续价值神经网络相比,基于离散的神经元“动作电位”的尖峰神经网络(SNN)不仅是生物纤维,而且是实现能量的有吸引力的候选者。nvms提供了实施几乎所有层次结构(包括设备,电路,体系结构和算法)几乎所有层次结构的区域和能量snn计算面料的承诺。可以利用NVM的内在装置物理学来模拟单个神经元和突触的动态。这些设备可以连接在密集的横杆状电路中,从而实现了神经网络所需的内存,高度平行的点产生计算。在架构上,可以以分布式的方式连接此类横梁,从而引入其他系统级并行性,这是与传统的Von-Neumann架构的根本性。最后,可以利用基于NVM的基础硬件和学习算法的跨层优化,以在学习和减轻硬件Inaccu-Racies方面的韧性。手稿首先引入神经形态计算要求和非易失性记忆技术。随后,我们不仅提供了关键作品的审查,而且还仔细仔细审查了从设备到电流到架构的不同抽象级别的各种NVM技术的挑战和机遇,以及硬件和算法的共同设计。
随着大型语言模型的规模继续迅速扩展,运行它们所需的计算能力也是如此。基于事件的神经形态设备的网络提供了一种潜在的方法来大大减少推理的能源消耗。迄今为止,大多数基于事件的网络都可以在包括尖峰神经网络(SNNS)在内的神经形态硬件上运行,即使与LSTM模型相当,也无法实现任务性能。结果,对神经形态设备的语言建模似乎是一个遥远的前景。在这项工作中,我们基于最近发表的基于事件的架构The Egru,演示了在神经形态设备(特别是Spinnaker2芯片)上的第一个语言模型实现。spinnaker2是一种多核神经形态芯片,设计用于大规模异步处理,EGRU构建以有效地利用此类硬件,同时保持竞争性任务绩效。此实现标志着神经形态语言模型首次与LSTM匹配,为将任务性能带到大语言模型的级别设定了阶段。我们还根据DVS摄像机的输入来展示对手势识别任务的结果。总的来说,我们的结果展示了这种神经启发的神经网络在硬件中的可行性,强调了单批推断的常见用例的能源效率的显着增长与常规硬件的可行性。
摘要 - 计算机视觉和深度学习方面的进步导致人们对Ai-Art的领域的兴趣激增,包括数字图像创建和机器人辅助绘画。传统的绘画机依靠静态图像和offl ine处理来将视觉反馈纳入其绘画过程中。但是,这种方法并未考虑绘画的动态性质,并且无法将复杂的重叠模式分解为单个笔触。作为基于框架的RGB摄像机的替代方法,神经形态摄像机通过异步事件流捕获场景中光强度的变化,有望克服传统计算机视觉技术的某些固有局限性。在此项目中,提出了一种用于物理绘画的机器人系统,该系统利用了动态视觉传感器(DVS)摄像机的基于事件的视觉输入。为了利用摄像机的超低潜伏期和稀疏编码,该建议的系统还采用了基于事件的信息处理,并在神经形态Dynapse-1处理器上使用尖峰神经网络实现。机器人系统接收DVS感官数据,它代表了笔触的轨迹,并计算了所需的关节速度,以闭环方式用6多F的机器人臂重新创建中风。控制器还将触觉反馈从力量扭转传感器集成在一起,以动态调整末端exector的距离,这取决于刷子的变形。在项目范围内,进一步证明了如何从DVS数据中提取有关感知的笔触中风的速度信息。该系统在现实世界中进行了测试,并成功生成了物理笔触的集合。提出的网络是迈向完全尖峰的机器人控制器的第一步,能够无缝融合基于事件的感觉反馈,从而提供超低潜伏期响应能力。除了在机器人辅助绘画中的实用性之外,开发的网络还适用于需要实时自适应控制的任何机器人任务。
摘要 — 随着人类向更高水平的人工智能迈进,总是以不断增加的计算资源消耗为代价,这需要开发新颖的解决方案来满足人工智能计算需求的指数级增长。神经形态硬件从大脑处理信息的方式中汲取灵感,并有望实现人工智能工作负载的节能计算。尽管神经形态硬件具有巨大潜力,但它尚未进入商业人工智能数据中心。在本文中,我们尝试分析其根本原因,并得出促进神经形态系统实现高效和可持续云计算的要求和指南:我们首先回顾当前可用的神经形态硬件系统,并收集神经形态解决方案优于 CPU 和 GPU 上的传统人工智能处理的示例。接下来,我们确定通常部署在人工智能数据中心的应用程序、模型和算法,作为神经形态算法研究的进一步方向。最后,我们得出神经形态系统与数据中心的硬件和软件集成的要求和最佳实践。通过这篇文章,我们希望提高人们对将神经形态硬件集成到数据中心所面临的挑战的认识,并指导社区实现大规模可持续、节能的人工智能。索引术语——神经形态硬件、云计算、人工智能、数据中心、可持续计算