基因组编辑技术的进步使得利用酶的功能进行有效的 DNA 修饰成为可能,这对治疗人类遗传疾病具有巨大的潜力。已经开发出几种核酸酶基因组编辑策略来纠正基因突变,包括大核酸酶 (MN)、锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列-CRISPR 相关蛋白 (CRISPR-Cas)。CRISPR-Cas 已被进一步设计为创建切口酶基因组编辑工具,包括具有高精度和高效率的碱基编辑器和主要编辑器。在这篇综述中,我们总结了用于治疗遗传疾病的核酸酶和切口酶基因组编辑方法的最新进展。我们还强调了这些方法转化为临床应用的一些局限性。
双镍酶质粒被视为“许可产品”,应按照www.scbt.com/limitedlicense上规定的有限许可使用。购买此产品向买方购买了不可转让的使用权的产品,以及仅用于购买者在其实验室中进行的研究目的的所有重复和衍生品(无论买方是学术还是营利性实体)。买方不能出售或以其他方式转移(a)本产品(b)使用此产品或其组件制成的材料或(c)将其组件或其组件制成的材料或以其他方式使用本产品,其组件或使用此产品或其组件制造的材料或材料出于商业目的。
双切口酶质粒被视为“许可产品”,应根据 www.scbt.com/limitedlicense 上规定的有限许可使用。购买本产品即向买方转让不可转让的权利,买方有权将所购买的产品数量以及所有复制品和衍生物仅用于买方在其实验室进行的研究目的(无论买方是学术实体还是营利实体)。买方不得向第三方出售或以其他方式转让 (a) 本产品 (b) 其组件或 (c) 使用本产品或其组件制成的材料,或以其他方式将本产品或其组件或使用本产品或其组件制成的材料用于商业目的。
线粒体内膜的物理和化学特性对常用于核基因组碱基编辑的CRISPR系统提出了挑战,因为其向导RNA不能轻易进入线粒体来编辑线粒体DNA(mtDNA)1。此外,之前鉴定的DNA脱氨酶主要针对单链DNA(ssDNA),这限制了它们在线粒体DNA碱基编辑器的开发中的应用。然而,可以修饰双链DNA(dsDNA)中胞嘧啶的DddA脱氨酶的发现,使得开发线粒体DNA碱基编辑器成为可能,例如DddA衍生的胞嘧啶碱基编辑器(DdCBE)和转录激活因子样效应物(TALE)连接的脱氨酶(TALED)2,3。这些工具依赖于 DddA,但受到其序列偏好以及通过与转录抑制因子 CTCF 4 相互作用对核基因组产生脱靶效应的风险的限制。此外,DdCBE 和 TALED 会编辑目标序列的两条链 2 , 3 ,从而导致不准确。这些限制阻碍了这些工具在研究和治疗由线粒体DNA突变引起的疾病中的应用。
NR2E3 编码一个孤儿核受体,该受体在光感受器中起转录激活剂和抑制剂的双重功能,是视锥细胞命运抑制以及视杆细胞分化和体内平衡所必需的。该基因突变会导致色素性视网膜炎 (RP)、增强型 S 视锥综合征 (ESCS) 和 Goldmann-Favre 综合征 (GFS)。据报道,一种 Nr2e3 异构体包含所有 8 个外显子,第二种 — 以前未报道 — 较短的异构体仅跨越前 7 个外显子,其功能仍然未知。在这篇数据文章中,我们通过使用 CRISPR/Cas9-D10A 切口酶靶向 Nr2e3 的外显子 8 设计并生成了两种新型小鼠模型,以剖析这两种异构体在 Nr2e3 功能中的作用并阐明 NR2E3 突变引起的不同疾病机制。这种策略产生了几个经过修饰的等位基因,改变了最后一个外显子的编码序列,从而影响了转录因子的功能域。等位基因 27 是 27 bp 的框内缺失,消除了二聚化域,而等位基因 E8(外显子 8 的完全缺失)只产生了缺乏二聚化和抑制域的短同种型。两者的形态和功能改变
。CC-BY 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
背景 单核苷酸替换、基因表达改变或有害基因的去除是植物许多重要农学性状的分子基础[1]。堆叠性状或改变调控途径的几个关键因素将极大地促进作物育种[1]。CRISPR-Cas 系统的多样性和简单性提供了强大的分子工具箱[2-10]。已采用多种策略在细菌、酵母和哺乳动物细胞中实现多重应用[11-16]。正交基因组操作最常用的多重策略包括几个正交 CRISPR 系统形成多功能 CRISPR 系统,例如使用 SpCas9 变体作为腺嘌呤碱基编辑器(ABE)和 SaCas9 作为胞嘧啶碱基编辑器(CBE)的双功能方法[17],或使用 LbCpf1 变体作为 CRISPRa、SpCas9 变体作为 CRISPRi 和 SaCas9 变体作为删除的三功能方法[15]。然而,这些策略需要同时递送多个 Cas 蛋白,并且每个 Cas 蛋白都需要自己的 PAM 识别 [ 15 , 17 ]。另一方面,各种 RNA 适体被整合到 CRISPR RNA 支架中,这些适体
Prime编辑器(PES)可以在真核基因组中进行针对性的精确编辑,包括产生替代,插入和缺失。但是,尚未探索他们的全基因组规范。在这里,我们开发了基于Nickase的Digenome-Seq(Ndigenome-Seq),这是一种体外测定,它使用全基因组测序来识别由CRISPR诱导的单链断裂(群集经常间隔短的短质体重复序列)-CAS9(CAS9)(CAS9)(CRISPR与蛋白9)Nickase。我们使用ndigenome-seq筛选了潜在的基因组宽靶点位点Cas9 H840A Nickase(一种PE成分),该位点针对9个人类基因组部位。Then, using targeted amplicon sequencing of off- target candidates identified by nDigenome-seq, we showed that only five off-target sites showed de- tectable PE-induced modifications in cells, at fre- quencies ranging from 0.1 to 1.9%, suggesting that PEs provide a highly specific method of precise genome editing.我们还发现,通过工程化的Cas9变体(尤其是ESPCAS9和Sniper Cas9)将突变分解为PE,可以进一步改善人类细胞中的PE特异性。
Prime Editing(PE)系统最少由两个组件组成:可编程DNA Nickase融合到工程逆转录酶和PEGRNA。Genscript核酸部门提供合成的Pegrna服务;以下是阳性对照pegrna(Kiok16&kiok17)和其他附件(OTS)产品: