Historical Overview ............................................................4 The Advent of Modern Robotics .........................................6 Evolution of Automation .....................................................7 Emergence of CNC Technology ........................................10 Technical Progress of CNC (Computer Numerical Control) .........................................................................10 Integration and Advancements ...................................................................................................................................................................................................................................................................................................................................................................................................................................
1 1,Songkla大学王子,Hat Yai,Songkhla 90110,泰国2化学工程系,巴格达大学10066年化学工程系,伊拉克3燃料研究与发展研究所(IFRD),孟加拉国科学和工业研究中心研究中心(BCSIR)(BCSIR)1205,孟加拉国委员会委员会。地球信息学和太空技术发展局(GOISTDA),Chonburi,20230,泰国5 5号,拉贾马加拉技术大学兽医学院,托恩伯里科技大学,Chonburi,20110年,泰国6物理系,国王科学系,沙特大学国王大学,SAUDUNICO点大学,RIYADH 11451,RIYARE ARAIRE ARABIAS 7 SOLAR ENSIER INSIE SOLAR INSIE INSCIE,SERII ARABIIA,SERIE INSTUTE,SERI INSIE,KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYANAISA,忙BANGI 43600,马来西亚雪兰莪州8物理系,教育学院,Qadisiyah大学,Al-Qadisiyah,al-diwaniyah,al-diwaniyah 58002,伊拉克 *通信:mdshahariar.c@psu.ac.ac.ac.ac.th(s.c.th(s.c.); sittiporn@gistda.or.th(s.c。)1,Songkla大学王子,Hat Yai,Songkhla 90110,泰国2化学工程系,巴格达大学10066年化学工程系,伊拉克3燃料研究与发展研究所(IFRD),孟加拉国科学和工业研究中心研究中心(BCSIR)(BCSIR)1205,孟加拉国委员会委员会。地球信息学和太空技术发展局(GOISTDA),Chonburi,20230,泰国5 5号,拉贾马加拉技术大学兽医学院,托恩伯里科技大学,Chonburi,20110年,泰国6物理系,国王科学系,沙特大学国王大学,SAUDUNICO点大学,RIYADH 11451,RIYARE ARAIRE ARABIAS 7 SOLAR ENSIER INSIE SOLAR INSIE INSCIE,SERII ARABIIA,SERIE INSTUTE,SERI INSIE,KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYAN KEYANAISA,忙BANGI 43600,马来西亚雪兰莪州8物理系,教育学院,Qadisiyah大学,Al-Qadisiyah,al-diwaniyah,al-diwaniyah 58002,伊拉克 *通信:mdshahariar.c@psu.ac.ac.ac.ac.th(s.c.th(s.c.); sittiporn@gistda.or.th(s.c。)
摘要:本研究提出了一种混合方法,以生成用于未来的机器学习应用程序的样本数据,用于使用GMAW工艺预测定向能量沉积 - ARC(DED-ARC)中的机械性能。DED-ARC是一个增材制造过程,由于其高沉积速率高达8 kg/h,它提供了一种具有成本效益的生成3D金属零件的方式。由填充材料G4SI1(ER70 S-6)制成的添加性生产的壁结构以T 8/5冷却时间的依赖性显示。数值模拟用于将过程参数和几何特征与特定T 8/5冷却时间联系起来。具有平均焊接功率,焊接速度和几何特征(例如壁厚,层高度和热源尺寸)的输入,可以在模拟焊接过程中计算每种迭代的特定温度场。这种新颖的方法允许通过结合实验结果来生成基于实验测量的T 8/5冷却时间来生成回归方程,从而生成大型的人工数据集作为机器学习方法的训练数据。因此,使用回归方程与数值计算的t 8/5冷却时间结合使用,在这项研究中可以准确预测机械性能,仅误差仅为2.6%。因此,一小部分实验生成的数据集允许实现回归方程,从而可以精确地预测机械性能。此外,经过验证的数值焊接模拟模型适合于实现T 8/5冷却时间的准确计算,误差仅为0.3%。
摘要 - 在本文中,通过有限元方法(FEM)研究了等离子bragg光栅过滤器的微型设计。过滤器基于沉积在石英基板上的等离激元金属 - 金属波导。为近红外波长范围设计的波纹布拉格光栅均在波导的两侧结构。通过改变过滤器设计的几何参数来研究过滤器的光谱特性。结果,在λbragg= 976 nm处获得的最大ER和带宽为36.2 dB和173 nm,滤光片占地面积分别为1.0×8.75 µm 2。可以通过分别增加光栅周期和光栅的强度来进一步改善ER和带宽。此外,Bragg光栅结构非常容易接受介质的折射率。这些特征允许使用材料,例如金属 - 绝缘体 - 金属波导中的聚合物,可以进行外部调整,也可以用于折射率传感应用。所提出的Bragg光栅结构的灵敏度可以提供950 nm/riU的灵敏度。我们认为,本文提出的研究提供了一个指南,以实现可用于过滤器和折光索引传感应用中的小脚印等离子布拉格光栅结构。
本文重点介绍集成在新型变形机翼应用的执行机构中的电动微型执行器的建模、仿真和控制。变形机翼是现有区域飞机机翼的一部分,其内部由翼梁、纵梁和肋条组成,结构刚度与真实飞机的刚度相似。机翼的上表面是柔性蒙皮,由复合材料制成,并经过优化以满足变形机翼项目要求。此外,机翼上还附有一个可控刚性副翼。执行机构的既定架构使用四个类似的微型执行器,固定在机翼内部并直接驱动机翼的柔性上表面。执行器是内部设计的,因为市场上没有可以直接安装在我们的变形机翼模型内的执行器。它由一个无刷直流 (BLDC) 电机、一个变速箱和一个螺旋桨组成,用于推动和拉动机翼的柔性上表面。电动机
在本文中,我们提出了一种在 Boussinesq 近似下求解不可压缩 Navier-Stokes 方程的新 3D 方法。开发的数值代码的优势在于使用高阶方法进行时间积分(3 阶 Runge-Kutta 方法)和空间离散化(6 阶有限差分方案)。对数值方法的阶数进行了研究,然后对几种自然对流情况进行了广泛的验证。使用 FreeFem++ 开发了针对同一问题的有限元模拟代码,并针对相同的自然对流情况进行了验证。通过使用浸入边界法对产生热量的内部障碍物进行建模来处理电信机柜的情况。该方法已通过有限元模拟和文献中的许多其他案例进行了验证。我们展示了不同 2D 和 3D 配置的结果,其中障碍物以不同的方式放置在腔体内。还展示了结果,以与机柜中两个散热组件的实验测量结果进行比较。最终扩展并测试了有限元代码,以模拟可用作被动冷却装置的相变材料。
▶ 因式分解 ▶ 非结构化搜索 ▶ 离散傅里叶变换 ▶ 应用数学:线性系统,微分方程,最优化,机器学习,· · · 量子算法动物园:https://quantumalgorithmzoo.org 林林的讲义:[arXiv:2201.08309]
ANSYS-Fluent 软件用于离散化过程以求解传输方程 [9-15]。传输方程求解的基本问题是精确计算特定体积壁上的传输变量 Φ 及其跨这些边界的对流 [16-22]。如果问题是计算问题,则必须通过计算来考虑所谓的“假”数值扩散的发生以及超出正确解范围的传输变量值 Φ 的发生 [23,24]。本文对使用 ANSYS-Fluent 软件 CFD 代码中提出的自由计算方案进行计算的物理精度进行比较,并讨论如何减少这些数值误差 [25- 32]。
联络通道是地铁隧道内常见结构,为事故隧道人员快速疏散至对面安全隧道提供通道。地铁隧道联络通道通风是通过隧道两侧通风系统的协同作用实现的。同时,列车堵塞、车厢内热量积聚等因素也会影响地铁隧道内烟气运动,前者需要进一步细化,以预测防止烟气进入地铁隧道联络通道所需的临界速度和驱动力。通过一维理论分析和全尺寸冷烟实验,研究了两侧隧道风机送风参数与联络通道通风速度之间的关系,提出了隧道联络通道烟气控制对侧安全隧道风机选型计算模型。通过数值模拟,量化了列车位置、火灾热释放速率和主隧道通风速度对联络通道临界速度的影响。结果表明:畅通条件下联络通道内临界速度大于阻塞条件下的临界速度,且临界速度在畅通和阻塞条件下均表现出相对稳定性。在无量纲分析的基础上,提出了一种分段函数来预测隧道联络通道内临界速度。研究结果可为类似结构的隧道防火防烟措施的实施提供有益指导。
摘要 在本研究中,我们提出了一种新颖的冷却方案,该方案利用铜反蛋白石 (CIO) 在单相冲击喷射冷却系统中进行表面增强。我们执行计算流体动力学模拟来评估 CIO 喷射冷却器的冷却性能。我们的建模结果表明,所提出的 CIO 涂层冷却器可以显著降低平均温度并提高整个芯片表面的温度均匀性。CIO 涂层冷却器的平均努塞尔特数可达到平面喷射冷却器的 2.8 倍。然而,CIO 涂层冷却器的多孔结构会增加总压降。为了确定具有高冷却性能和低能耗的设计,我们研究了两个关键的设计因素,即入口速度和喷嘴到 CIO 的距离。我们的分析表明,增加入口速度会进一步增强热传递,但代价是高压降。另一方面,喷嘴与 CIO 之间的距离越大,压降越小,但传热系数也会降低。通过研究流阻网络,可以进一步了解喷嘴与 CIO 之间的距离的影响。此外,我们提出了一个降阶模型,可以准确捕捉所提设计的热流体特性。