1. 简介 3D 建模是使用专门的计算机程序创建和修改三维对象的过程,该程序为用户提供了一组必要的工具。 3D 建模通常从基本形状(基元)开始,例如立方体、球体、圆环等。然后通过软件提供的不同功能修改这些形状。用户通常通过按下键盘上的组合键或从用户界面中选择它们来激活这些功能。如今,有许多功能强大的 3D 建模软件,可以创建 3D 资源、动画、特效和渲染图像。最受欢迎的付费应用程序是 Autodesk Maya、Autodesk 3ds Max 和 Cinema 4D。也有许多免费应用程序可用,但最受欢迎的应用程序是 Blender。Blender 是一个免费的开源 3D 计算机图形软件工具集。它用 C、C++ 和 Python 编程语言编写。Blender 基金会是一个负责 Blender 开发的非营利组织。 Blender 也是由社区开发的,社区创建了用 Python 编写的附加插件(称为附加组件)。附加组件为 Blender 添加了新功能或改进功能。由于 Blender 发展基金的成立,Blender 最近获得了 Epic Games、Nvidia 或 Intel 的大量资金支持。它使 Blender 基金会能够招募新的团队成员,从而更快地开发 Blender。
本本学论文研究了使Ari人形机器人能够使用机器学习和计算机视觉中的基本概念来学习和识别新对象的任务。该研究围绕着开发和实施直接向前的3D对象检测和分类管道,目的是使机器人能够识别以前尚未遇到的对象。该方法整合了开放式识别和增量学习的基本方面,重点是使用ARI机器人在实用环境中应用这些技术。通过一系列元素实验评估了实施系统的有效性,重点关注其检测和分类新的观察的能力。这些初始测试提供了有关系统在受控环境中的基本功能及其潜在效用的见解。本文在介绍性层面上有助于掌握机器人技术,并在实用机器人背景下对机器学习和计算机视觉的使用进行了初步探索。它为在机器人对象识别领域的未来研究奠定了基础。
工作流语言(CWL)[15],更具体地说是抽象的CWL [20](不可执行)描述变体,伴随本机工作流定义。这以跨工作流语言的互操作方式呈现结构,组成的工具和外部接口。wfms可以生成抽象的CWL,已经为银河系演示,旁边是“本机” Galaxy Workflow描述。此语言二元性是可重复性的重要保留方面,因为可以独立于其本机格式作为CWL访问工作流的结构和元数据,即使可能不再可执行,也可以以公平的格式捕获规范的工作流。本机格式的共同存在可以从特定的WFM中直接重复使用,从而受益于其所有功能。●使用最小信息模型的有关工作流及其工具的元数据:我们使用BioSchemas [16]配置文件
摘要 - 在本文中,我们提出了一种使用机器人臂控制弹性可变形物体形状的一般统一跟踪方法。我们的方法是通过在对象周围形成晶格,将对象与晶格结合,并跟踪和宣誓晶格而不是对象的宣誓。这使我们的方法完全控制了3D空间中任何一般形式的弹性变形对象的变形(线性,薄,体积)。此外,它将方法的运行时复杂性与对象的几何复杂性相分解。我们的方法基于可行的(ARAP)变形模型。它不需要已知对象的机械参数,并且可以通过大变形将对象驱动到所需的形状。我们方法的输入是对象表面的静止形状的点云,并且在每个帧中由3D摄像头捕获的点云。总的来说,我们的方法比现有方法更广泛地适用。我们通过多种形状和材料(纸,橡胶,塑料,泡沫)的弹性变形物体进行了许多实验来验证方法的效率。实验视频可在项目网站:https://网站上找到。Google。com/view/tracking-servoing-apphack。
摘要 - 本文解决了在复杂制造环境中实施无标记的增强现实(AR)的挑战。使AR系统更加直观,健壮和适应性是使其在行业中成为可能的必需步骤。在不受控制的现实世界环境中遇到的硬约束中,我们显着面对生产线的动态性质以及在组装过程中对象的不断发展的外观。新兴深度学习(DL)方法启用了6D对象构成移动对象的AR注册的估计。但是,他们需要大量的6D对象构成地面真相数据。在现实世界的情况下,由于两个因素:建立精确的6D姿势标签程序的复杂性是在真实生产线中建立准确的6D姿势标签程序的复杂性,并且在整个组装线上遇到了各种各样的对象状态和外观。因此,有必要开发能够处理看不见的对象的替代6D构成估计技术。为此,本文介绍了一条新的管道,依靠HoloLens 2进行数据捕获,神经辐射场(NERF)进行3D模型生成,以及用于6D姿势估计的Megapose。所提出的方法可以实现6D姿势估计,而无需特定对象的训练或辛苦的姿势标签。
说明使用现代加密技术将R对象加密到原始向量或文件。基于密码的密钥推导与“ argon2”()。对象被序列化,然后使用“ XCHACHA20- poly1305”进行加密(),遵循RFC 8439的rfc 8439,用于认证的加密( and>)加密函数由随附的“单核”'C'库提供()。
摘要 - 本文提出了一种用于抓住不规则对象的新轨迹重新启动器。与常规的掌握任务不同,该任务简单地假定对象的几何形状,我们旨在实现不规则对象的“动态掌握”,这需要在握把过程中持续调整。为了有效处理不规则的对象,我们提出了一个构成两个阶段的轨迹优化框架。首先,在指定的时间限制为10 s的指定时间限制中,为从机器人的初始配置中进行无缝运动计算初始离线轨迹,以掌握对象并将其传递到预定义的目标位置。其次,实现了快速的在线轨迹优化,以在100毫秒内实时更新机器人轨迹。这有助于减轻视力系统中的估计错误。为了解释模型的不准确性,干扰和其他非模块化效果,实施了机器人和抓手的轨迹跟踪控制器,以从提出的框架中阐明最佳轨迹。密集的实验结果有效地证明了我们在模拟和现实世界中的轨迹计划框架的性能。
《登记公约》的目的之一是确保联合国秘书长建立并维护发射到外层空间物体的中央登记处。因此,当发射太空物体时,《登记公约》要求“发射国”通知联合国。公约将“发射国”定义为从其领土发射物体的国家或促成其发射的国家(或其国民促成其发射)。
感知虚拟对象的空间信息(例如,方向,距离)对于寻求不可思议的虚拟现实(VR)体验的盲人用户至关重要。为了促进盲人用户的VR访问权限,在本文中,我们研究了两种类型的触觉提示(多余的提示和皮肤伸展线索)在传达虚拟物体的空间信息时,当应用于盲人手的背侧时。我们与10个盲人用户进行了一项用户研究,以调查他们如何使用定制的触觉机构在VR中感知静态和移动对象。我们的结果表明,盲人用户可以在接收皮肤拉伸线索时更准确地理解对象的位置和移动,这是对纤维曲折提示的。我们讨论了两种类型的触觉提示的利弊,并以设计建议的设计建议,以实现VR可访问性的未来触觉解决方案。
摘要最近几年在智能对象(SOS)领域取得了长足的进步:它们的数量,多样性,性能和普遍性都在迅速增加,预计这种演变将继续下去。据我们所知,几乎没有做出的工作来利用丰富的资源来开发视力障碍者(VIP)的辅助设备。但是,我们认为SOS既可以增强传统的辅助功能(即障碍物检测,导航)并提供与环境互动的新方法。在描述了SOS启用的空间和非空间感知功能之后,本文介绍了SO2Sees,该系统旨在成为其用户和相邻SOS之间的接口。SO2SEES允许VIP以直观的方式查询SOS,依靠在物联网(IoT)云平台上分发的知识库和SO2Sees自己的后端。为了评估和验证裸露的概念,我们使用语义Web标准开发了SO2SEES系统的简单工作实现。围绕该早期SO2SEES系统建立了一种受控的环境测试方案,以证明其可行性。作为未来的工作,我们计划使用VIP最终用户进行该第一个原型的现场实验。