(OCT) 图像,一些研究成功地使用 AI 来检测单一疾病表现的存在,例如视网膜内积液的存在、视网膜黄斑硬化症的存在或黄斑液的量化。2–4 该领域的一种可能的 AI 应用是为居住在缺乏眼科医生或训练有素的验光师的地区患者提供筛查和诊断帮助。然而,现代网络包含数百万个学习到的连接。总的趋势是设计更深、更复杂的网络以实现更高的准确性。这些人工智能程序通常需要高科技和昂贵的计算机系统,其中包含先进的图形处理单元,而这些单元通常是医疗保健不足或低收入地区的公用事业所负担不起的。在这种情况下,基于智能手机的高精度、低设备要求的移动人工智能系统极其重要和有用。智能手机应用程序 (app) 和移动机器人通常只需要较低的内存和能耗。5 因此,开发了一种高效的网络架构 MobileNet,以满足移动和嵌入式视觉应用程序的设计要求。更小更快的模型使用宽度乘数和分辨率乘数,以合理的精度来减少尺寸和延迟。与其他模型相比,使用 MobileNets 的程序表现出优越的尺寸、速度和精度特性。6
明尼苏达州劳工和工业部 (DLI) 部署了一项新技术,该技术将用于虚拟检查特定类型的项目。最初,只有楼梯升降椅安装将使用该技术进行检查。所提供的虚拟检查类型称为离线现场报告 (OFR),由安装人员进行,提交后由州检查员在线审查。该技术由 VuSpex 开发,他们的 OFR 产品称为 VuSpex Go。
强化学习(RL)范式解决了这些类型的问题,其中代理通过接收观察和潜在的奖励与环境互动,并以其政策指导的行动做出回应。rl框架可以根据其建模假设和模拟环境的可访问性进行分类。基于模型的RL可实现对环境的明确建模,利用专家知识或从经验中学习。博学的世界模型取得了巨大的成功,主要是因为它们创建了简化的状态表示形式,与稀疏和非微分奖励相比产生了更多的训练信号,并促进了学习模型的潜在空间中的互动,绕开了对计算要求和潜在不现实的不现实的专家模拟器的需求。
摘要 - 离线目标条件的强化学习(GCRL)的目的是通过脱机数据集的稀疏重新解决目标解决目标任务。虽然先前的工作已经阐明了代理商学习近乎最佳策略的各种方法,但在处理复杂环境(例如安全限制)中处理各种约束时,这些方法会遇到限制。其中一些方法优先考虑目标,而无需考虑安全性,而其他方法则以牺牲培训效率为代价而过度关注安全性。在本文中,我们研究了限制离线GCRL的问题,并提出了一种称为基于恢复的监督学习(RBSL)的新方法,以完成具有各种目标的安全至关重要的任务。为了评估方法性能,我们基于具有随机定位的障碍物的机器人提取环境建立基准测试,并使用专家或随机策略来生成离线数据集。我们将RBSL与三种离线GCRL算法和一种离线安全RL算法进行比较。结果,我们的方法在很大程度上可以执行现有的最新方法。此外,我们通过将RBSL部署在真正的熊猫机械手上来验证RBSL的实用性和有效性。代码可在https://github.com/sunlighted/rbsl.git上找到。
离线增强学习(RL)试图使用离线数据学习最佳策略,由于其在在线数据收集不可行或昂贵的关键应用程序中的潜力,因此引起了极大的兴趣。这项工作探讨了联合学习对离线RL的好处,旨在协作利用多个代理商的离线数据集。专注于有限的情节表格马尔可夫决策过程(MDPS),我们设计了FedLCB-Q,这是针对联合离线RL量身定制的流行无模型Q学习算法的变体。FedLCB-Q更新了具有新颖的学习率时间表的代理商的本地Q-功能,并使用重要性平均和精心设计的悲观惩罚项将其在中央服务器上汇总。Our sample complexity analysis reveals that, with appropriately chosen parameters and synchronization schedules, FedLCB-Q achieves linear speedup in terms of the number of agents without requiring high-quality datasets at individual agents, as long as the local datasets collectively cover the state-action space visited by the optimal policy, highlighting the power of collaboration in the federated setting.实际上,样本复杂性几乎与单代理对应物的复杂性匹配,好像所有数据都存储在中心位置,直到地平线长度的多项式因子。此外,fedlcb-Q是通信有效的,其中通信弹的数量仅相对于地平线长度与对数因素有关。
摘要:中国拟建的超级金牛座神灯装置(STCF)是新一代正负电子对撞机,质心能量为2~7 GeV,峰值亮度为0.5×1035cm−2s−1。开发了STCF离线软件(OSCAR),支持离线数据处理,包括探测器仿真、重建、刻度以及物理分析。针对STCF的具体要求,OSCAR基于HEP实验轻量级通用软件SNiPER框架进行设计和开发。除了常用的 Geant4 和 ROOT 软件外,OSCAR 还采用了 HEP 社区中一些最先进的软件包和工具,例如探测器描述工具包 (DD4hep)、普通旧数据 I / O (podio) 和英特尔线程构建模块 (TBB) 等。本文将介绍 OSCAR 的总体设计和一些实现细节,包括事件数据管理、基于 SNiPER 和 TBB 的并行数据处理以及基于 DD4hep 的几何管理系统。目前,OSCAR 已全面投入使用,以促进 STCF 探测器的概念设计和其物理潜力的研究。
强化学习(RL) - 找到最大化所收集的长期累积奖励的操作行为(也称为策略),这是机器学习中最有影响力的机器学习中的最大影响之一。在几个决定性问题中,人们面临政策转换的可能性(从车道政策变为新政策),这会损害不容易忽略的成本,而在决定中,人们可以使用历史数据,而没有可用的数据,而无需进行进一步的在线互动。尽管这是最重要的,但据我们所知,这很重要,但几乎没有努力解决以一种灵活和原则性的方式解决收益和转换成本之间的关键问题。利用最佳运输领域的思想,我们将系统转换的系统研究局限于局部的RL。我们建立了基本属性,并为拟议的新型切换公式设计了净活动界算法。数字实验证明了我们的方法在体育馆的多个机器人控制基准和SUMO-RL的光照控制上的效率。
在低强度TU的快速增长的领域中,使用“离线”经颅超声刺激(TUS)方案特别感兴趣。离线TU可以在刺激后长达几个小时调节神经活动,这表明诱导早期神经塑性。对人类和非人类灵长类动物的研究都显示了神经调节靶标和与之相关的区域的分布式网络的空间特定变化。这些变化表明兴奋性或抑制作用是所用方案与基础大脑区域和状态之间复杂相互作用的结果。了解如何通过离线诱导早期神经塑性,可以为在广泛的脑部疾病中影响晚期神经塑性和治疗应用开放途径。
具有 Wi-Fi 功能的 Android 手机可提供智能浏览功能。通过利用此功能,我们将使用每个用户都可以使用的离线数据流,并且可以享受管理员存储在 Raspberry Pi 中的不同媒体。由于,我们将使用具有内置 Wi-Fi 热点功能的 Raspberry Pi 来广播媒体。在 Raspberry Pi 中有一个静态 IP,其中有一些 PHP 文件将访问用户端,并且他们将能够访问 PHP 页面上可用的任何数据。所有这些工作都将在包含 XAMPP 服务器的 Raspbian OS 平台上完成。通过连接到 Raspberry Pi 提供的 WI-FI,您的手机、平板电脑或笔记本电脑能够通过 Raspberry Pi 提供的离线服务器访问数据。可以从用户 android 应用程序中加载、下载和阅读视频、书籍和通知。该系统为管理员和用户提供访问系统的功能。通过此系统,管理员可以添加任何
摘要 目的。电极设计的进步已导致微电极阵列具有数百个通道,可用于单细胞记录。在由此产生的电生理记录中,每个植入电极可以记录一个或多个神经元的尖峰活动 (SA) 以及背景活动 (BA)。本研究的目的是分离每个神经源的 SA。此过程称为尖峰排序或尖峰分类。高级尖峰排序算法非常耗时,因为在流程的各个阶段都需要人工干预。当前方法缺乏泛化能力,因为超参数的值并不固定,即使对于同一受试者的多个记录会话也是如此。在本研究中,提出了一种称为“SpikeDeep-Classifier”的全自动尖峰排序算法。所有评估数据的超参数值都保持不变。方法。提出的方法基于我们之前的研究 (SpikeDeeptector) 和一种新颖的背景活动拒绝器 (BAR),它们都是监督学习算法和无监督学习算法 (K-means)。 SpikeDeeptector 和 BAR 分别用于提取有意义的通道并从提取的有意义的通道中去除 BA。一旦从数据中完全去除 BA,聚类过程就会变得简单。然后,对仅来自神经源的剩余数据应用具有预定义最大聚类数的 K 均值。最后,使用基于相似性的标准和阈值来保留不同的聚类并合并看起来相似的聚类。所提出的方法称为聚类接受或合并 (CAOM),它只有两个超参数(最大聚类数和相似性阈值),在调整后对于所有评估数据保持不变。主要结果。我们将算法的结果与真实标签进行了比较。该算法在人类患者数据和公开可用的标记非人类灵长类动物 (NHP) 数据集上进行了评估。BAR 在人类患者数据集上的平均准确率为 92.3%,在 (K-means + CAOM) 之后进一步降低到 88.03%。此外,BAR 在公开可用的 NHP 标记数据集上的平均准确率为 95.40%,经过 (K-mean + CAOM) 后降至 86.95%。最后,我们将 SpikeDeep-Classifier 的性能与两位人类专家进行了比较,其中 SpikeDeep-Classifier 产生了可比的结果。意义。SpikeDeep-Classifier 在不同物种、不同大脑区域的多个记录会话的数据集上进行了评估