摘要 针对转移信号通路(例如受体酪氨酸激酶 (RTK) 触发的通路)的靶向治疗在预防肿瘤进展方面具有良好的前景。然而,基于 RTK 的靶向治疗经常遭受耐药性,因为多种生长因子受体共同表达可能会引发补偿性次级信号传导和治疗后获得性突变。一种替代策略是操纵 RTK 信号的常见负调节剂。其中,Raf 激酶抑制蛋白 (RKIP) 是本文的重点。RKIP 可以与 Raf-1 结合,从而抑制下游丝裂原活化蛋白激酶 (MAPK) 级联。RKIP 还负向调节其他转移信号分子,包括 NF- κ B、STAT3 和 NOTCH1。一般而言,RKIP 通过结合和阻断上述通路上游关键分子的活性来实现此任务。一种新的 RKIP 相关信号传导涉及活性氧 (ROS)。在我们最近的报告中,我们发现 PKC δ 介导的 ROS 生成可能通过肿瘤启动子 12-O-十四烷酰-佛波醇-13-乙酸酯引发的 HSP60 氧化来干扰 RKIP 与热休克蛋白 60 (HSP60)/MAPK 复合物的结合。RKIP 的离开可能在两个方面影响下游 MAPK。一是触发与 MAPK 偶联的 HSP60 从 Mt→胞质溶胶转位。二是改变 HSP60 的构象,有利于胞质溶胶中上游激酶更有效地激活相关的 MAPK。值得研究的是,能够产生 ROS 的各种 RTK 是否可以通过以相同的方式影响 RKIP 来驱动转移信号。
摘要:丙酮酸激酶(PK)是糖酵解三大限速酶之一,在能量代谢中起着至关重要的作用。本研究从水稻基因组中鉴定了10个PK基因。最初,这些基因被分为两类:细胞质丙酮酸激酶(PKc)和质体丙酮酸激酶(PKp)。随后,表达分析发现OsPK1,OsPK3,OsPK4,OsPK6和OsPK9在籽粒中高表达,并且PK可以形成杂聚物。此外,研究还发现脱落酸(ABA)显著调控水稻中PK基因(OsPK1,OsPK4,OsPK9和OsPK10)的表达。有趣的是,所有这些基因都参与了水稻籽粒品质和产量的调控。例如,破坏 OsPK3 、OsPK5 、OsPK7 、OsPK8 和 OsPK10 以及破坏 OsPK4 、OsPK5 、OsPK6 和 OsPK10 分别降低了千粒重和结实率。此外,通过 CRISPR/Cas9 系统破坏 OsPK4 、OsPK6 、OsPK8 和 OsPK10 后,与野生型相比,总淀粉含量增加,蛋白质含量降低。同样,操作 OsPK4 、OsPK8 和 OsPK10 基因会增加直链淀粉含量。同时,除 ospk6 外,所有 CRISPR 突变体和 RNAi 系的谷粒与野生型相比,垩白率均显著增加。总体而言,这项研究描述了PK基因家族所有基因的功能,并展示了它们在改善水稻产量和品质性状方面的尚未开发的潜力。
DSA 数字签名算法 ECC 椭圆曲线密码 ECCSI 基于椭圆曲线的基于身份的无证书签名 ECDSA 椭圆曲线数字签名算法 FE 函数加密 HIBE 基于身份的分层加密 IBC 基于身份的密码 IBE 基于身份的加密 IBS 基于身份的签名 IdM 身份管理 IMAP 互联网消息访问协议 IMAP4 互联网消息访问协议 v4 IoT 物联网 ITS 智能运输系统 KMS 密钥管理服务 LMTP 本地邮件传输协议 LTE 长期演进 MCPTT 任务关键型一键通 MPK 主公钥 MSK 主密钥 MTA 消息传输代理 MUA 消息用户代理 NIST 国家标准与技术研究所 PAP 策略管理点 PDP 策略决策点 PEP 策略执行点 PIP 策略信息点 PKC 公钥密码 PKI 公钥基础设施 POP 邮局协议 POP3 邮局协议 v3 RK 随机密钥 RSA Rivest-Shamir-Adleman SK密钥 SKID 密钥 IDentity SMTP 简单邮件传输协议 SMTPS 简单邮件传输协议安全 SP 特别出版物(NIST) URI 统一资源标识符 XACML 可扩展授权控制标记语言
ATP ATP腺苷-5'-三磷酸凸轮钙调蛋白CARQ CAQ+激活的Rho蛋白,带有嵌入的IQP Ceru ceru cerulean,相当于CFP CFP CFP CyAn荧光蛋白 Dulbecco's modified eagle medium FBS Fetal Bovine Serum FKBP12 12-kDa FK506 and rapamycin-binding protein FRB FKBP-rapamycin binding domain FRET Fluorescence resonance energy transfer GST Glutathione S-transferase His Polyhistidine-tag IRES Internal ribosomal entry site LB Luria Broth LOV Light-oxygen-voltage域,lov2域Lovs1K Lov2结构域与刺激1 c末端碎片MCS多个克隆位点MLCKP肌球蛋白轻链激酶激酶肽MRFP单体红色荧光蛋白相当于RFP,相当于RFP NES核出口NLS NLS NLS信号NLS信号NLS核定位PBS PBS PBS磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐酶磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐磷酸盐反应pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu pdbu PKC Protein kinase C pLyn Palmitoylation sequence of Lyn kinase RFP Red fluorescent protein, equivalent to mRFP SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis SH3 SRC Homology 3 Domain TEV Tobacco etch virus TEVp Tobacco etch virus protease TS Temperature-sensitive tsTEVp Temperature-sensitive tobacco蚀刻病毒蛋白酶tvmvp烟草静脉斑点病毒蛋白酶蛋白酶ven venus,相当于YFP YFP YFP黄色荧光蛋白,相当于Ven
摘要 全球 5.9% 的死亡与过量饮酒有关。然而,这一数字在男性中尤其严重,7.6% 的死亡可归因于饮酒。先前的研究发现,在不同男性群体中,甘丙肽 (GAL) 基因的基因型与焦虑和酒精滥用之间存在显著的相互作用,但无法确定其中的机制。为了解决这些问题,本研究分析了英国生物银行的人类队列,并发现高度保守的人类 GAL5.1 增强子的等位基因变异 (GG 或 CA 基因型)、酒精摄入量 (AUDIT 问卷分数) 和男性焦虑之间存在显著的相互作用 (n = 115,865; p = 0.0007)。至关重要的是,使用 CRISPR 基因组编辑破坏小鼠的 GAL5.1 显著降低了杏仁核和下丘脑中的 GAL 表达,同时相应减少了 KO 小鼠的乙醇摄入量。有趣的是,我们还发现雄性 GAL5.1KO 动物的焦虑样行为减少的证据与我们在英国生物库研究中看到的人类相似。通过生物信息学分析和共转染研究,我们进一步确定了 EGR1 转录因子,该因子与杏仁核和下丘脑中的 GAL 共同表达,对蛋白激酶 C (PKC) 支持的 GG 基因型 GAL5.1 活性很重要,但在 CA 基因型中则不那么重要。我们独特的研究采用了人类关联分析、小鼠 CRISPR 基因组编辑、动物行为分析和细胞培养研究的新组合,以确定一种高度保守的调节机制,该机制将焦虑和酒精摄入联系起来,这可能导致男性对焦虑和酒精滥用的敏感性增加。
$,ġM3JSRAG8NN,JCRN QCAKY ICY CCRN VM7PW CC,C I J3,C I J3,@nrir s@ c,@ a3,rlurc30 r8 c3 \ n3n,3 r8 n3jsrag 8nn,jcrncn,jcrnc q使用i n3jsrag 8nn,jcrncrncrncrncrn cli3nj30 cn qchain到3 n0 wes cameri i 3nqcarnl3ny?rs 03uirw pkc jar uar,3c pm7c r8 ty-ty-c3aa QC,3,@ cnc cnc c crrn c crrn c urrn crccii crccii 3AW,@ ii3n \ nl,rlurunj cn < @ c $ 3J3,rlurn i u3acral n,3,i3 r8 \ nl u t to II3iccly r3 ii3IC cne icne icne icne icn3 <3 <3 <3r pm7 c,@30nin N0建筑物NC83th CJ CJ CNJR J@3 \ A 0a Jac,nn,n,N,RNS CN30 $ CN RUJCN RUJCN RUJCLCY CCRN V [M#QW LR03IY HAN UARURC30 JR CRIQ3 JRIQ3 J@3 LR03IY 7CN IIW。 S3 3Q 3Q,rlurn i a3cnijc n0 UAR $ 3lys@ c,@ a3,rlurc30 r8 c3 \ n3n,3 r8 n3jsrag 8nn,jcrncn,jcrnc q使用i n3jsrag 8nn,jcrncrncrncrncrn cli3nj30 cn qchain到3 n0 wes cameri i 3nqcarnl3ny?rs 03uirw pkc jar uar,3c pm7c r8 ty-ty-c3aa QC,3,@ cnc cnc c crrn c crrn c urrn crccii crccii 3AW,@ ii3n \ nl,rlurunj cn < @ c $ 3J3,rlurn i u3acral n,3,i3 r8 \ nl u t to II3iccly r3 ii3IC cne icne icne icne icn3 <3 <3 <3r pm7 c,@30nin N0建筑物NC83th CJ CJ CNJR J@3 \ A 0a Jac,nn,n,N,RNS CN30 $ CN RUJCN RUJCN RUJCLCY CCRN V [M#QW LR03IY HAN UARURC30 JR CRIQ3 JRIQ3 J@3 LR03IY 7CN IIW。 S3 3Q 3Q,rlurn i a3cnijc n0 UAR $ 3ly\ nl,rlurunj cn < @ c $ 3J3,rlurn i u3acral n,3,i3 r8 \ nl u t to II3iccly r3 ii3IC cne icne icne icne icn3 <3 <3 <3r pm7 c,@30nin N0建筑物NC83th CJ CJ CNJR J@3 \ A 0a Jac,nn,n,N,RNS CN30 $ CN RUJCN RUJCN RUJCLCY CCRN V [M#QW LR03IY HAN UARURC30 JR CRIQ3 JRIQ3 J@3 LR03IY 7CN IIW。 S3 3Q 3Q,rlurn i a3cnijc n0 UAR $ 3lyN0建筑物NC83th CJ CJ CNJR J@3 \ A 0a Jac,nn,n,N,RNS CN30 $ CN RUJCN RUJCN RUJCLCY CCRN V [M#QW LR03IY HAN UARURC30 JR CRIQ3 JRIQ3 J@3 LR03IY 7CN IIW。S3 3Q 3Q,rlurn i a3cnijc n0 UAR $ 3ly
摘要 — 区块链技术可确保关键应用(包括具有嵌入式系统的物联网)的可追溯性、透明度和冗余性。然而,对公钥加密 (PKC) 的依赖使区块链容易受到量子计算威胁。本文通过将后量子密码 (PQC) 集成到区块链框架中,解决了对量子安全区块链解决方案的迫切需求。利用 NIST PQC 标准化过程中的算法,我们旨在加强区块链的安全性和弹性,特别是对于物联网和嵌入式系统。尽管 PQC 非常重要,但它在针对嵌入式环境定制的区块链系统中的实现仍未得到充分探索。我们提出了一种量子安全区块链架构,评估了各种 PQC 原语并通过 Falcon 的公钥恢复等技术优化交易规模,将交易规模减少了 17%。我们的分析表明 Falcon-512 是嵌入式环境中量子安全区块链最合适的算法,而 XMSS 是一种可行的有状态替代方案。然而,对于嵌入式设备,Dilithium 的每秒交易数 (TPS) 比 Falcon 更高,这主要是因为 Falcon 在 ARM CPU 上的签名性能较慢。这凸显了签名时间是 PQC 集成到嵌入式区块链中的关键限制因素。此外,我们将智能合约功能集成到量子安全区块链中,评估 PQC 对智能合约认证的影响。我们的研究结果证明了在嵌入式系统中部署量子安全区块链解决方案的可行性和实用性,为强大且面向未来的物联网应用铺平了道路。
抽象的慢性或间歇性高血糖与糖尿病并发症的发展有关。可以通过在不同组织中过度血糖,产生氧化应激,高级糖基化终产物(AGE)的形成以及促炎性弹药细胞因子和细胞死亡(病理自噬和/或凋亡)的分泌来改变几种信号通路。然而,由于产生活性氧(ROS),氧化应激和细胞死亡,高血糖直接触发的信号传导途径在糖尿病并发症中似乎具有关键作用。本综述将讨论细胞死亡在糖尿病并发症中的作用,它将暗示高血糖诱导的信号传导途径和细胞死亡之间的原因和后果。本综述中讨论的信号通路应逐步描述,以及它们各自的抑制剂。它们涉及二酰基甘油,蛋白激酶C(PKC)和NADPH-氧化酶系统的激活以及随之而来的ROS产生。最初的标题为“糖尿病中的危险代谢路线”。为了评估该敏感区域中知识的发展,已突出了历史用法和新药在控制可能的治疗靶标方面的最新进步。最近已经证明,对刺激的代谢反应(即高血糖)涉及信号通路的集成网络,以定义确切的响应。某些新药已经经过实验测试(或建议和提出),以调节其可能下调视网膜病变,肾病,神经病,心脏病,血管生成,血管生成,氧化应激和细胞死亡的能力。这项研究的目的是批判性地校定地评估这些信号通路的确切步骤,因此标志着所指示的该药物作用及其可能后果的位置。本综述将强调当针对ROS产生,氧化应激以及随之而来的细胞死亡的降低时,还将强调控制信号通路的治疗靶标 - 所有这些疾病都是糖尿病中的问题。
磷脂酶A2(PLA2)是磷脂的Sn-2酰基酯键,产生游离脂肪酸和溶物磷脂[1-3]。PLA2产物蛛网膜酸和溶血磷脂酰胆碱分别是类花生酸和血小板激活因子的速率限制前体,它们是血管活性和炎症等功能的有效介体[1-4]。多年来,蛛网膜酸被认为主要是由分泌类型的PLA2产生的。这些构成了一类密切相关的酶,分子量范围为14至20 kDa [5-7]。分泌PLA2的主要特征包括它们对硫醇试剂的敏感性[4],它们对Ca2+毫米浓度的需求以及对在SN-2位置的Arachidonic Acid的底物缺乏特异性。现在,他们的功能被认为仅限于细胞膜同源性的脂质消化和维持[7]。在各种细胞类型中进行的最新研究表明,另一种PLA2S,分子质量在85-110 kDa范围内[8-17]。这些酶主要是胞质(CPLA2S),在微摩尔Ca2+浓度下活跃[4,18],并优先在SN-2 posion [8-17]中用蛛网膜酸将磷脂磷脂磷脂[8-17]。这些特性表明CPLA2S可能专门用于细胞信号传导[19]。的确,它们被激素[10,1 1,20]和生长因子[20]激活,并为产生促进生长的类花生酸酯[21-23]提供了前体。然而,尚未鉴定出用于初始产生的酶的酶。这些观察结果提高在血管平滑肌肉细胞(VSMC)中,有效的血管结合子血管紧张素II(Angli)通过激活环氧酶和lipoxyganase Pathloese的激活来增加蛛网膜衍生物的合成[24]和白细胞。在本文中,我们表明,Angll通过蛋白激酶C(PKC)刺激[3H]蛛网膜酸释放,而VSMC中的CPLA2激活刺激了[3H]。
双相情感障碍(BD)的特征是极端情绪波动,从躁狂/易感发作到抑郁发作。这些发作的严重程度,持续时间和频率可能会在个人之间差异很大,从而显着影响生活质量。患有BD的人几乎一生都经历了情绪症状,尤其是抑郁症,以及相关的临床维度,例如Anhedonia,疲劳,自杀,焦虑和神经疗法症状。持续的情绪症状与过早死亡率,加速衰老和抗药性抑郁症患病率升高有关。最近的努力扩大了我们对BD神经生物学的理解以及可能有助于跟踪临床结果和药物开发的下游靶标。然而,作为一种多基因障碍,BD的神经生物学很复杂,涉及几个细胞器和下游靶标(前,后,突触外和突触外)的生物学变化,包括线粒体功能障碍,氧化应激,氧化应激,单氨基氨基疗法和谷胱甘肽症状系统的变化,以及较低的神经元素级别,并改变了神经际较低的系统,并改变了神经胰蛋白质的变化。因此,该领域已朝着确定更精确的神经生物学靶标,而神经生物学目标又可能有助于开发个性化的方法和更可靠的生物标志物来进行治疗预测。在情绪障碍中还测试了针对神经传递以外的神经生物学途径的多种药理学和非药物方法。本文回顾了BD中非规范途径中不同神经生物学靶标和病理生理发现,这些发现可能会提供支持药物开发并识别新的,临床上相关的生物学机制的机会。这些包括:神经炎症;线粒体功能;钙通道;氧化应激;糖原合酶激酶3(GSK3)途径;蛋白激酶C(PKC);脑衍生的神经营养因子(BDNF);组蛋白脱乙酰基酶(HDAC);和嘌呤能信号通路。