• 基于吉非替尼的 EGFR PROTAC 以剂量、时间和蛋白酶体依赖的方式降低致癌突变 EGFR 的水平 • PROTAC 下调 EGFR 通路的靶点并抑制细胞增殖,消除致癌蛋白的所有致癌功能 • EGFR PROTAC 的高特异性可以降低肺癌治疗的毒性 • PROTAC 是针对突变 EGFR 和其他致癌蛋白的有效策略
摘要:靶向蛋白质降解是药物发现领域的一个新方面。传统上,开发抗生素包括繁琐而昂贵的过程,例如药物筛选、先导化合物优化和配方设计。蛋白水解靶向嵌合体 (PROTAC) 是新一代药物,它利用蛋白水解机制选择性地降解和消除与人类疾病有关的蛋白质。PROTAC 在癌症领域的应用得到了广泛的探索,各种 PROTAC 正在临床试验中。因此,研究人员对将 PROTAC 技术作为对抗致病病毒和细菌的新武器有着浓厚的兴趣。本综述强调了抗菌 PROTAC 和其他类似的“类 PROTAC”技术在降解致病靶蛋白(即病毒/细菌蛋白)方面的重要性。这些技术可以对致病蛋白进行特异性蛋白质降解,以避免因致病蛋白突变或异常表达而导致的耐药性。基于 PROTAC 的抗菌疗法具有高特异性和降解“不可用药”蛋白质(例如非酶蛋白质和结构蛋白质)的能力。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
摘要:蛋白水解靶向嵌合体 (PROTAC) 通过诱导肿瘤过表达致癌蛋白的降解而迅速成为一种潜在的癌症治疗策略。它们可以通过募集 E3 连接酶和利用泛素-蛋白酶体途径特异性地催化目标致癌蛋白的降解。由于其作用方式具有普遍性、不可逆性、可回收性、持久性并且适用于“不可用药”的蛋白质,PROTAC 正在逐渐取代传统小分子抑制剂的作用。此外,它们的应用领域正在扩展到癌症免疫治疗,因为各种类型的致癌蛋白都参与了免疫抑制肿瘤微环境。然而,较差的水溶性和低细胞通透性大大限制了药代动力学 (PK) 特性,这需要使用适当的递送系统进行癌症免疫治疗。本综述首先简要介绍PROTAC的一般特性、发展现状和药代动力学。然后介绍近年来各类PROTAC的被动或主动靶向递送系统的应用研究,并描述它们对PROTAC的药代动力学和肿瘤靶向性的影响。最后,总结了近年来用于癌症免疫治疗的PROTAC药物递送系统。采用合适的PROTAC递送系统有望加速PROTAC的临床转化,并提高其对癌症治疗的有效性。
1. Araldi, RP 等人,成簇的规律间隔的短回文重复序列 (CRISPR/Cas) 工具的医学应用:全面概述。基因,2020 年。745:第 144636 页。2. Frangoul, H.、TW Ho 和 S. Corbacioglu,CRISPR-Cas9 基因编辑用于镰状细胞病和β-地中海贫血。回复。N Engl J Med,2021 年。384 (23):第 e91 页。3. Groenen, PMA 等人,结核分枝杆菌直接重复簇中 DNA 多态性的性质 - 一种新型分型方法在菌株区分中的应用。分子微生物学,1993 年。10 (5):第 1057-1065 页。 4. Ishino, Y. 等人,大肠杆菌中负责碱性磷酸酶同工酶转化的 Iap 基因的核苷酸序列及其基因产物的鉴定。细菌学杂志,1987 年。169 (12):第 5429-5433 页。5. Chen, JS 和 JA Doudna,Cas9 及其 CRISPR 同事的化学反应。自然评论化学,2017 年。1 (10)。6. Doudna, JA 和 E. Charpentier,使用 CRISPR-Cas9 进行基因组工程的新前沿。科学,2014 年。346 (6213):第 1077-+ 页。7. Whinn, KS 等人,核酸酶死亡 Cas9 是 DNA 复制的可编程障碍。科学报告,2019 年。9 月。8. Tsai, SQ 等人,GUIDE-seq 可对 CRISPR-Cas 核酸酶的脱靶切割进行全基因组分析。自然生物技术,2015 年。33 (2):第 187-197 页。9. Wang, Y. 等人,CRISPR 系统的特异性分析揭示了大大增强的脱靶基因编辑。科学报告,2020 年。10 (1)。10. Zuccaro, MV 等人,Cas9 切割人类胚胎后去除等位基因特异性染色体。细胞,2020 年。183 (6):第 1650-+ 页。11. Aschenbrenner, S. 等人,将 Cas9 与人工抑制结构域耦合可增强 CRISPR-Cas9 靶向特异性。 Science Advances,2020 年。6 (6)。12. Bondy-Denomy, J. 等人,抗 CRISPR 蛋白抑制 CRISPR-Cas 的多种机制。Nature,2015 年。526 (7571):第 136-9 页。13. Khajanchi, N. 和 K. Saha,通过小分子调控控制 CRISPR 进行体细胞基因组编辑。Mol Ther,2022 年。30 (1):第 17-31 页。14. Han, J. 等人,对小分子药物的超敏反应。Front Immunol,2022 年。13:第 1016730 页。15. Pettersson, M. 和 CM Crews,蛋白水解靶向嵌合体 (PROTAC) - 过去、现在和未来。 Drug Discov Today Technol,2019. 31:第 15-27 页。16. Bondeson, DP 和 CM Crews,小分子靶向蛋白质降解。Annual Review of Pharmacology and Toxicology,第 57 卷,2017 年。57:第 107-123 页。17. Li, R.,等人,蛋白水解靶向嵌合体 (PROTAC) 在癌症治疗中的应用:现在和未来。Molecules,2022 年。27 (24)。18. Farasat, I. 和 HM Salis,用于合理设计基因组编辑和基因调控的 CRISPR/Cas9 活性的生物物理模型。PLoS Comput Biol,2016 年。12 (1):第 e1004724 页。
迄今为止,靶向嵌合体(Protac)技术的蛋白水解已成功地用于介导蛋白酶体诱导的几种药物靶标的降解,这主要与肿瘤学,免疫失调和神经退行性疾病有关。另一方面,其在抗病毒药物发现领域的剥削仍处于起步阶段。最近,我们描述了两个基于吲哚美辛(INM)的protac,它们对冠状病毒表现出广谱抗病毒活性。在这里,我们报告了一系列基于INM的Protac的设计,合成和表征,这些protac招募了Von-Hippel Lindau(VHL)或Cereblon(CRBN)E3连接酶。也通过改变链接器部分来扩大基于INM的Protac的面板。抗病毒活性非常容易受到这种修饰,特别是对于将VHL劫持为E3连接酶的Protac,一种基于哌嗪的化合物(Protac 6)显示了受感染的人肺细胞中有效的抗SARS-COV-2活性。Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6 ) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hy pothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (M pro ) both in M pro -transfected and in SARS-COV-2感染的细胞。重要的是,由于目标降解,INM-Protacs在吲哚美辛中表现出相当大的抗病毒活性增强,在低微极/纳摩尔范围内EC 50值。最后,针对Protac 5和6测量了动力学溶解度以及代谢和化学稳定性。总的来说,在SARS-COV-2感染的细胞中证明活性的一类SARS-COV-2 M Pro降解者,将基于INM的Protac鉴定为有效的,广泛的抗副癌病毒策略的发展。
在2001年记录了Protac的治疗潜力后,对靶向蛋白质降解的兴趣已从学术界转变为工业。1个Protac已成为一种治疗方式,几个候选者已进入临床试验。2 Protac的潜力在其结构中编码。接头将感兴趣的蛋白质(POI)结合部分连接到泛素E3连接酶识别部分(图1A)。异常结构使Protac可以使POI和E3连接酶更接近。这引起了POI的泛素化,然后由细胞的处置机制靶向。2
胃癌仍然是最常见的最常见的恶性肿瘤,也是全世界缺乏有效药物和治疗靶标的癌症相关死亡率的第五个主要原因。积累的证据表明,由E1,E2和E3酶和蛋白酶体组成的UPS在GC肿瘤发生中起着重要作用。UPS的失衡会损害GC开发过程中蛋白质稳态网络。因此,调节这些酶和蛋白酶体可能是GC靶疗法的有前途的策略。此外,Protac是一种使用UPS降解靶蛋白的策略,是药物开发的新兴工具。到目前为止,越来越多的Protac药物进入癌症治疗的临床试验。在这里,我们将分析UPS中的异常表达酶,并总结可以在Protac中开发的E3酶,以便可以为UPS调节剂和Protac Technology的开发用于GC治疗。
摘要:配体诱导的蛋白质降解已成为一种引人注目的方法,通过将蛋白质引导至泛素蛋白酶体机制来促进蛋白质从细胞中的靶向消除。到目前为止,仅发现有限数量的 E3 连接酶支持配体诱导的蛋白质降解,这反映了用于蛋白水解靶向嵌合体 (PROTAC) 设计的 E3 结合化合物的缺乏。在这里,我们描述了一种功能筛选策略,该策略使用候选亲电 PROTAC 的集中库来发现通过共价结合 E3 连接酶来降解人体细胞中蛋白质的双功能化合物。机制研究表明,亲电 PROTAC 通过修饰 DCAF11(一种特征不明显的 E3 连接酶底物接头)中的特定半胱氨酸起作用。我们进一步表明,DCAF11 导向的亲电 PROTAC 可以降解人类前列腺癌细胞中的多种内源性蛋白质,包括 FBKP12 和雄激素受体。我们的研究结果表明 DCAF11 是一种 E3 连接酶,能够通过亲电 PROTAC 支持配体诱导的蛋白质降解。■ 简介
利用蛋白酶体介导的蛋白酶降解靶向嵌合体 (PROTAC) 选择性降解致病蛋白的能力是药物发现领域中一个令人兴奋的研究领域。PROTAC 由 3 个组件组成:E3 连接酶结合剂、接头和目标蛋白结合剂。任何 PROTAC 程序都可能需要合成大量化合物,这些化合物包含不同的 E3 连接酶、接头和靶向结合剂,以便识别命中化合物。PROTAC 的连续合成可能很慢,如果通过定制化学方法进行,有时需要几个月的时间,这对于快速的设计、制造、测试、分析 (DMTA) 周期来说太慢了。为了解决这个问题,GSK 开发了一个 E3 连接酶结合剂和接头库(图 2)。在开发用于 PROTAC 匹配物发现的阵列平台时,GSK 投资确定了高通量化学条件,以便从各种连接点探索 E3 连接酶,制备了千克级连接酶结合物以供平台使用,并在单体组中加入了专有的 E3 结合物。该平台的目标是使项目团队能够在不到 1 个月的时间内从获得功能化结合物到获得降解数据。在 PROTAC 平台的开发过程中,准备了数百种单体,这些单体具有各种长度和类型的连接物,以快速确定起点并探索降解结构 - 活性关系 (SAR)。