摘要:为了弥合 IC 级和板级制造之间的技术差距,文献中已经展示了一种完全添加的选择性金属化。在本文中,概述了制造过程中涉及的每个步骤的表面特性,并进行了表面的块状金属化。该生产技术使用聚氨酯作为环氧树脂,并使用专有的接枝化学方法在 FR-4 基板上用共价键对表面进行功能化。然后使用化学镀铜 (Cu) 浴对表面进行金属化。分析了使用光化激光束和钯 (Pd) 离子沉积 Cu 的这种逐层生长。采用最先进的材料表征技术来研究界面处的工艺机制。进行了密度泛函理论计算以验证层间共价键的实验证据。这种制造方法能够在相当低的温度下以选择性的方式向印刷电路板添加金属层。本文对使用材料块状沉积的工艺进行了完整的分析。
尽管俄罗斯和乌克兰在世界经济(按购买力平价计算,占世界 GDP 的 3.5%)和国际贸易中的总体比重较低,但这两个国家在天然气、石油、小麦、化肥或某些工业部门必不可少的金属(尤其是铝、镍和钯)等基本产品方面仍具有决定性作用。一些行业和国家高度依赖这些进口:欧盟消费的近四分之一的精炼原油和三分之一的天然气来自俄罗斯(2019 年)。俄罗斯占德国进口石油的 38% 和天然气的 49%。它提供了意大利消耗的 40% 的天然气,而意大利 43% 的电力都是由天然气生产的。俄罗斯仅占法国出口的 1.1% 和进口的 1.5%。这些高度集中在碳氢化合物(43%,尤其是天然气)和炼油和焦化产品(35%)中。然而,俄罗斯只是继挪威(40%)之后法国第二大天然气供应国(占总量的 20%),而且天然气在法国能源结构中所占比例非常有限。
1 美国内政部,“2022 年关键矿产最终名单”,2022 年,https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/files/2022%20Final%20List%20of%20Critical%20Minerals%20Federal%20Register%20Notice_2222022-F.pdf。 2 美国能源部已将铜指定为能源“关键材料”。 3 Wilson, KR,2019 年 8 月,《南伊利诺伊州希克斯穹顶的稀土元素、其矿化模式及其与火成岩侵入的关系》,南伊利诺伊大学论文,https://www.proquest.com/dissertations-theses/rare-earth-elements-at-hicks-dome-southern/docview/2307147009/se-2。 4 Schulz, KJ、DeYoung, JH, Jr.、Seal, RR, II 和 Bradley, DC 编辑,2017 年,《美国关键矿产资源——经济与环境地质及未来供应前景:美国地质调查局专业论文 1802》,797 页,http://doi.org/10.3133/pp1802。 5 Denny, FB、Goldstein, A.、Devera, JA、Williams, DA、Lasemi, Z.、Nelson,2008 年,《伊利诺伊州东南部和肯塔基州西北部的伊利诺伊州-肯塔基州萤石区、希克斯穹顶和众神花园》,美国地质学会,http://dx.doi.org/10.1130/2008.fld012(02)。 6 Bellora, JD、Burger, MH、Van Gosen, BS、Long, KR、Carroll, TR、Schmeda, Germán 和 Giles, SA,2019 年,《美国稀土元素分布(4.0 版,2019 年 6 月):美国地质调查局数据发布》,https://doi.org/10.5066/F7FN15D1。 7 American Lithium Minerals,2022 年 9 月 21 日,“稀土:绿色能源革命的重要组成部分”,创新新闻网,https://www.innovationnewsnetwork.com/rare-earths-an-essential-part-of-the-green-energy-revolution/25593/。
细菌细胞培养YEEI VKM B-3302细菌菌株dipacoccus paracoccus paracoccus yeei vkm b-3302是由作者的研究小组分离出来的,这些污泥是由从市政废水处理厂衍生而来的活性污泥中的。paracoccus yeei细菌是强氧。革兰氏阴性球菌具有小细胞直径(约0.5-0.9μm),可以在产生的催化剂中产生细菌支撑的高钯纳米粒子含量。它们在纯文化中表现出高增长率,易于传播和维持2。这些微生物的另一个值得注意的特征是它们对金属盐3、4的抗性,它允许在具有活细胞载体的系统中形成纳米颗粒。在luria – bertani(lb)的养分培养基上培养了,这些培养基补充了10 g/l肽,10 g/l NaCl和5 g/l酵母提取物。在750 cm 3的Erlenmeyer烧瓶中栽培的细菌细胞在28°C的温度下,养分培养基体积为200 cm 3,同时以180 rpm的振荡器充气。48小时后,通过以8000 rpm的速度在试管中以8000 rpm的速度离心细菌培养。将细胞生物量干燥,然后在+4°C的测试管中储存。
ISFET(离子敏感场效应晶体管)微传感器广泛用于 pH 值测量以及分析和生物医学应用。同时,ISFET 是测试各种材料在敏感膜中的应用的良好候选者。例如,含有 Pd 纳米晶体 (C-Pd) 的氢敏感碳质薄膜使这种材料非常适合传感器应用。选择了一种经济高效的硅技术来制造 n 沟道晶体管。将这些结构耦合到专门设计的双面 PCB(印刷电路板)支架上。支架使该结构能够组装为自动支架的一部分。MIS 结构生产的最后一步是沉积 C-Pd 层。C-Pd 薄膜采用物理气相沉积 (PVD) 法制造,其中蒸发了 C60 和醋酸钯。在具有 C-Pd 薄膜的结构与氢相互作用期间测量了它们的电阻。最后,展示并描述了一种新型高灵敏度场效应晶体管(FET)氢传感器,该传感器带有碳-钯层。关键词:场效应晶体管,碳-钯层,氢传感器,场效应晶体管。
摘要 — 本文第一部分介绍了 5 纳米碳纳米管场效应晶体管 (CNFET) 静态随机存取存储器 (SRAM) 单元的尺寸和参数优化。在此基础上,我们提出了一种由原理图优化的 CNFET SRAM 和 CNT 互连组成的碳纳米管 (CNT) SRAM 阵列。我们考虑由金属单壁 CNT (M-SWCNT) 束组成的 CNFET SRAM 单元内部的互连来表示金属层 0 和 1 (M0 和 M1)。我们研究了考虑 CNFET 器件、M-SWCNT 互连和金属电极钯与 CNT (Pd-CNT) 触点的 CNFET SRAM 单元的布局结构。探索了两种版本的单元布局设计,并在性能、稳定性和功率效率方面进行了比较。此外,我们实现了一个 16 Kbit SRAM 阵列,由提出的 CNFET SRAM 单元、多壁 CNT (MWCNT) 单元间互连和 Pd-CNT 触点组成。这种阵列表现出明显的优势,其读写总能量延迟积(EDP)、静态功耗和核心面积分别为采用铜互连的7nm FinFET-SRAM阵列的0.28×、0.52×和0.76×,而读写静态噪声裕度分别比FinFET高6%和12%。
摘要 自 2008 年左右以来,为了降低成本,人们开始全面从金 (Au) 键合线转向铜 (Cu) 键合线。与金相比,铜线在化学稳定性方面的可靠性和可重复键合特性存在挑战,而化学稳定性是高可靠性应用所必需的。因此,铜线在汽车和工业半导体中的应用受到限制。传统上,铜键合线市场分为两种类型:裸铜线(高纯度)和钯镀铜 (PCC) 键合线。这些线尚未满足工业和汽车电子产品等高可靠性产品所需的特性。与裸铜线和 PCC 线相比,一种新型替代键合线已经开发出来,可为高可靠性应用提供性能优势。铜合金线和银合金线继续在先进键合应用中推出,而裸铜线和 PCC 线在这些应用中具有已知的局限性。关键词替代线、铜、腐蚀、FAB、金、PCC、可靠性、银
Fujiwara-Moritani 反应对当代 C − H 活化方案的出现做出了重大贡献。尽管传统方法适用于不同领域,但相关的反应性和区域选择性问题使其变得多余。这种示范性反应的复兴需要开发一种能够同时控制反应性和区域选择性的机械范式。促进烯化所需的高热能通常会导致多位点功能化。为此,我们建立了一个光氧化还原催化系统,该系统由钯/有机光催化剂合并而成,以明确的区域选择性方式对各种芳烃和杂芳烃进行氧化烯化。可见光在执行“区域分辨”的 Fujiwara-Moritani 反应中起着重要作用,不需要银盐和热能。该催化系统还适用于在各自导向基团 (DG) 的帮助下进行近端和远端烯化,这意味着该方案具有多功能性,可以参与整个 C(sp 2 ) − H 烯化范围。此外,通过后期功能化简化天然产物、手性分子、药物的合成和多样化,凸显了这一可持续方案的重要性。通过控制反应、动力学研究和理论计算,在机制上建立了这种区域选择性转化的光诱导实现。
今天,技术的进步有能力改变每个人的生活。尽管这项创新是有益的,但它对人类健康和环境健康产生了严重影响。造成这种情况的主要原因之一是电子产品中的“电子垃圾”。全世界的电子产品的使用增加了“电子废物”或电子废物的数量,这已成为一个严重的问题。不当处理电子废物已成为环境和公共卫生问题,因为它现在是世界城市中最大的水垃圾。因此,正确分类和管理电子废物需要恢复有关废物的重要信息。这些生长的废物本质上是困难的,并且富含金属,例如北极菌,inim,钯,坦塔尔,铂,金,银,铅和铜,这些金属可以从废物中回收并在世界各地运回。生产周期和日常使用。在这个项目中,使用图像处理来识别电子废物和一般废物的深度学习模型。设计模型以良好的精度选择废物,并且花费更少的时间。废物被分为两组。通过有效地使用此模型,我们可以解决电子废物管理问题,改善回收利用并为环境可持续性做出贡献。
随着纳米技术的进步,创新的光子设计与功能材料相结合,提供了一种获取、共享和有效响应信息的独特方式。研究发现,在太赫兹 (THz) 超表面芯片上简单沉积 30 纳米厚的钯纳米薄膜,该芯片具有 14 纳米宽的非对称材料和几何结构的有效纳米间隙,可以跟踪原子间和界面气体-物质相互作用,包括气体吸附、氢化(或脱氢)、金属相变和独特的水形成反应。通过模拟和实验测量进行的组合分析证明了独特的纳米结构,从而以实时、高度可重复和可靠的方式导致显著的光物质相互作用和相应的 THz 吸收。还使用模拟正常温度和压力的系统控制三元气体混合装置彻底检查了受氢气暴露影响的金属的复杂晶格动力学和固有特性。此外,利用新的自由度来分析各种物理现象,从而引入了能够追踪导致水增长的未知水形成反应隐藏阶段的分析方法。单次曝光波谱强调了所提出的 THz 纳米级探针的稳健性,弥合了基础实验室研究与工业之间的差距。