摘要:在辐射下对钙钛矿设备中的界面特性的理解对于其工程至关重要。在这项研究中,我们展示了CSPBBR 3钙钛矿纳米晶体(PNC)和AU之间界面的电子结构如何受X射线,近红外(NIR)和紫外线(UV)光的照射的影响。可以通过使用低剂量X射线光电子光谱(XPS)来区分X射线和光线暴露的影响。除了金属铅(PB 0)的常见降解产物外,在暴露于高强度X射线或紫外线后,在PB 4F XPS光谱中鉴定出了新的中间分量(PB INT)。pb int分量被确定为单层金属Pb,是由钙钛矿结构破裂引起的pb诱导的pb的无电位沉积(upd)的单层金属Pb,允许PB 2+迁移。
本数据表中描述的英飞凌科技组件仅在获得英飞凌科技的明确书面批准的情况下才可用于生命支持设备或系统和/或汽车、航空航天应用或系统,前提是可以合理地预期此类组件的故障会导致该生命支持、汽车、航空航天设备或系统发生故障,或影响该设备或系统的安全性或有效性。生命支持设备或系统旨在植入人体或用于支持和/或维持和维持和/或保护人类生命。如果它们发生故障,可以合理地假设用户或其他人的健康可能受到危害。
在脆弱的发育时期接触铅 (Pb) 等环境化学物质会导致晚年健康出现不良后果。人类队列研究表明,发育期 Pb 暴露与晚年阿尔茨海默病 (AD) 发病之间存在关联,动物研究的结果进一步证实了这一观点。然而,发育期 Pb 暴露与 AD 风险增加之间的分子通路仍然难以捉摸。在这项工作中,我们使用人类 iPSC 衍生的皮质神经元作为模型系统来研究 Pb 暴露对人类皮质神经元中 AD 样发病机制的影响。我们将来自人类 iPSC 的神经祖细胞暴露于 0、15 和 50 ppb Pb 中 48 小时,去除含 Pb 的培养基,并进一步将它们分化为皮质神经元。免疫荧光、蛋白质印迹、RNA 测序、ELISA 和 FRET 报告细胞系用于确定分化皮质神经元中 AD 样发病机制的变化。将神经祖细胞暴露于低剂量 Pb,模拟发育暴露,可导致神经突形态改变。分化神经元表现出钙稳态、突触可塑性和表观遗传景观的改变,以及 AD 样发病机制标志物升高,包括磷酸化 tau、tau 聚集体和 A β 42/40。总之,我们的研究结果为发育性 Pb 暴露引起的 Ca 失调提供了证据基础,这是一种合理的分子机制,可解释发育性 Pb 暴露人群中 AD 风险的增加。
摘要 - 通过演示编程(PBD)是一种通过演示所需行为来编程机器人操纵技巧的技术技术。但是,大多数现有的方法要么需要广泛的演示,要么无法推广其最初的演示条件。我们介绍了扩散PBD,这是一种新颖的PBD方法,它使用户能够通过利用预先训练的视觉基础模型捕获的表示形式来综合单个演示中的可通用的机器人操纵技能。在演示时间,手和对象检测先验用于从锚定的人类示范中提取路点,以参考场景中的参考点。在执行时,利用了预训练的扩散模型的功能,以确定新观测中的相应参考点。我们通过一系列真实的机器人实验来验证这种方法,表明扩散PBD适用于广泛的操作任务,并且具有强大的能力,可以推广到看不见的对象,摄像头视图和场景。可以在https://diffusion-pbd.github.io
摘要 - 使用BRUS方程研究了限制方程中PBSE,PBS和PBTE半导体的光学性质。结果表明QD表现出尺寸依赖性的光学行为,因此,由于量子限制,QDS表现出可调的带隙和发射波长。随着QD尺寸的减小,所有三种材料的吸收边缘和发射峰均为蓝色。发现PBSE QD即使在较大尺寸的情况下也会显示出明显的量子限制。由于其相对较大的激子BOHR半径(〜46 nm),随着尺寸从10 nm降低到2 nm,频带gap从0.27 eV增加到1 eV,将吸收和排放转移到近红外(NIR)中,导致应用于NIR PhotodeTectors,太阳能电池,太阳能电池,太阳能电池,杂音,并将其应用于。此外,与PBSE相比,PBS QDS在较小的激子BOHR半径(〜20 nm)上显示出较小的量子限制效应。随着尺寸从10 nm降低到2 nm,带隙从0.41 eV增加到1.5 eV,将吸收和发射从NIR转移到可见范围。这是在太阳能电池中使用的,NIR光电探测器和LED可见。此外,PBTE QD还显示出明显的量子限制效应,因为它们相对较大的激子BOHR半径(〜46 nm)。随着尺寸从10 nm降低到2 nm,带隙从0.32 eV增加到约1 eV,将吸收和发射转移到NIR和中红外(miR)区域,使其成为红外探测器,热电和miR应用的出色材料。在研究的半导体材料中,PBS QD通常显示出带隙的最大增加,尺寸降低,使其适合需要更大的带隙可调性的应用,其次是PBSE和PBTE。这些不同的光学特性是由于其独特的电子特性和激子BOHR半径所致。
摘要:工业化和基础设施失败导致越来越多的不可逆健康状况导致慢性铅暴露。虽然最先进的分析化学方法提供了对铅的准确和敏感的检测,但它们太慢,昂贵且集中式,许多人都可以使用。基于变构转录因子(ATF)的无细胞生物传感器可以解决使用点上可访问的,按需铅检测的需求。 然而,已知的ATF(例如PBRR)无法以环境保护局(24 - 72 nm)调节的浓度检测铅。 在这里,我们开发了一个无单元的快速平台,用于具有提高灵敏度,选择性和动态范围特征的工程ATF生物传感器。 我们将此平台应用于工程师PBRR突变体,以将检测极限从10μm转移到50 nm的铅,并证明PBRR用作无细胞的生物传感器。 我们设想我们的工作流程可以应用于任何ATF。可以解决使用点上可访问的,按需铅检测的需求。然而,已知的ATF(例如PBRR)无法以环境保护局(24 - 72 nm)调节的浓度检测铅。在这里,我们开发了一个无单元的快速平台,用于具有提高灵敏度,选择性和动态范围特征的工程ATF生物传感器。我们将此平台应用于工程师PBRR突变体,以将检测极限从10μm转移到50 nm的铅,并证明PBRR用作无细胞的生物传感器。我们设想我们的工作流程可以应用于任何ATF。
perovskites,特别是CSPBX 3(X = F,Cl,Br,I),正在引起人们的注意,因为它们的显着光电特征,适用于诸如太阳能电池,LED和光电探测器之类的应用。利用密度功能理论(DFT),本研究探讨了CSPBX 3的电子,机械和光学性能。CSPBI 3和CSPBBR 3具有较大的带隙和出色的光学特征的理想电子特征,使其最适合太阳能电池和LED。CSPBF 3对于出色的机械性能而突出,非常适合闪烁体等应用。总体而言,电子和光学方面的CSPBI 3和CSPBBR 3 Excel Excel,而CSPBF 3在机械上是强大的。(收到2024年1月12日; 2024年8月14日接受)关键字:DFT,状态密度,光学性质,弹性属性1。简介钙钛矿是与矿物钙钛矿共有特定晶体结构的材料类别,它具有通用的式ABX 3,并包含阳离子A和B以及阴离子X [1] - [5]。由于它们在各种技术中的潜在用途,例如太阳能电池[6] - [9],发光二极管LED [10],Lasers [11],光电探测器[12],储能设备[13]和传感设备[14] perovskites最近引起了很多关注。尤其是钙钛矿太阳能电池已经看到了惊人的效率进步,并有可能替代常规的基于硅的太阳能电池作为低成本和有效的选择[15]。由钙钛矿制成的材料具有某些特征,使它们非常适合这些用途[16]。,由于其高吸收系数,它们可以吸收大量的光,并具有相对较少的材料层[17]。此外,由于它们的高电荷载体迁移率[18],它们可以适应各种应用,从而促进了快速电荷转移[19],并且能够通过改变材料的组成[20]来控制其带隙。钙钛矿太阳能电池的高功率转换效率和廉价的制造方法帮助他们迅速将自己确立为最有希望的下一代太阳能技术之一[21]。
锡铅(SNPB)合金被广泛用于微电子包装行业。它充当连接器,可提供从一个电路元件到另一个电路元件的连接所需的导电路径。在这项研究中,使用纳米识别测试研究了γ辐照对锡铅(SNPB)焊料微机械行为的影响。带有钴60源的伽马辐射暴露于从5 Gy到500 Gy的不同剂量的SNPB焊料。在这项研究中,使用纳米识别技术来了解SNPB焊接接头的微机械性能(硬度和模量降低)的演变。结果表明,随着γ辐射的增加,SNPB合金的硬度得到了增强。硬度在500 Gy样品,25.6 MPa的剂量时最大,在未辐照样品时的值最低。然而,由于材料的内在特性和原子键,减少了模量减少。
*通讯作者V. P. S. Awana博士,首席科学家CSIR-National实验室,印度电子邮件:aawana@nplindia.org ph。+91-11-45609357,传真 - +91-11-45609310
