1. 简介和文献综述 金属增材制造 (MAM) 是一种 3D 打印技术,对各个行业(例如航空航天、生物医学、能源)影响最为显著 (Armstrong 等人,2022 年)。根据 ASTM/ISO 52900:2021(ISO ASTM 标准 2021),MAM 分为以下类别:材料挤出 (MEX)、材料喷射 (MJ)、粘合剂喷射 (BJ)、粉末床熔合 (PBF)、定向能量沉积 (DED)、板材层压 (SL) 和瓮聚合 (VPP)。PBF 是最广泛的工艺技术,因为它成熟且精度高 (Mandolini 等人,2022 年),覆盖了 85% 的 MAM 市场 (AMPOWER GmbH & Co 2020 年)。另一方面,PBF 机器复杂且价格昂贵。最近,金属 MEX(M-MEX)因其以下优点而备受关注:成本低(例如台式系统)、设备简单(用户友好性)、潜在危害少(例如没有金属粉末损失)、电源有限(与 PBF 或 DED 相比)和环境可持续性增强(Suwanpreecha 和 Manonukul 2022;Bianchi 等人 2022)。另一方面,M-MEX 的主要缺点涉及线材(例如粘合剂类型的选择)及其生产工艺(例如合适的混合程序)。要求保证线材的高质量,以保证 3D 打印部件的最终形状、尺寸、尺寸和属性(Suwanpreecha 和 Manonukul 2022)。 M-MEX 也称为 mFFF(金属熔丝制造,(Bankapalli 等人,2023 年))、FDMet(金属熔融沉积,(Bankapalli 等人,2023 年))、金属 FDM(Ramazani 和 Kami,2022 年)、MF3(金属熔丝制造,(Singh 等人,2020 年)),其灵感来自 MIM(金属注射成型)和 FFF(熔丝制造)(Bankapalli 等人,2023 年)。这项技术的快速增长得益于 FFF 和 MIM 的大量投资。事实上,除了绿色部件的制造方法外,材料 MEX 与 MIM 相似(就整个过程而言)。M-MEX 可以制造出性能接近(或相同)于 MIM 的零件。就设计自由度而言,金属 MEX 更具吸引力,因为它不需要模具。 M-MEX 原料由金属粉末和聚合物粘合剂组成(图 1)。通过将原料挤压到构建平台上来创建 3D 对象(绿色部分)。需要脱脂以去除部分聚合物材料。烧结是最后一个过程,通过以下方式完全致密化部件
• AM = 增材制造 • DED = 定向能量沉积 • DfAM = 增材制造设计 • PBF = 粉末床熔合 • LP-DED = 激光粉末 DED • L-PBF = 激光粉末床熔合 • EB-PBF = 电子束粉末床熔合 • LW-DED = 激光丝 DED • AW-DED = 电弧丝 DED • EB-DED = 电子束 DED • AFSD = 增材搅拌摩擦沉积 • UAM = 超声波增材制造
摘要一种最先进的制造技术,该技术使用粉末或电线作为饲料材料和高能加热来源称为金属添加剂制造(AM)。使用增材制造(AM)设计和生产用于汽车,航空航天,医疗和能源应用的高性能组件。在此概述中,仅讨论了激光添加剂制造(LAM)程序,例如粉末床融合(PBF)和定向能量沉积(DED)。lam提供了制造当前设计的替代路径,并允许以常规方法不可能以复杂性的形式创建新设计。添加剂制造最有希望的形式之一是激光添加性制造,它可能以低成本产生东西,同时保持高价值和产量(LAM)。具体来说,当涉及各种类型的电线喂养,粉末喂食和粉末状的组件时,它涉及到定向的能量沉积(DED)或粉末床融合(PBF)时,它研究了在LAM期间发生的关键冶金现象以及不同LAM技术之间的区分。本研究提供了有关LAM系统的分类,LAM过程的应用,关键处理因子,频繁的缺陷,制造零件的机械特征,众多与机器相关的参数以及沉积条件的优化。
• AM = 增材制造 • DED = 定向能量沉积 • DfAM = 增材制造设计 • PBF = 粉末床熔合 • LP-DED = 激光粉末 DED • L-PBF = 激光粉末床熔合 • EB-PBF = 电子束粉末床熔合 • LW-DED = 激光丝 DED • AW-DED = 电弧丝 DED • EB-DED = 电子束 DED • AFSD = 增材搅拌摩擦沉积 • UAM = 超声波增材制造
金属增材制造 (MAM) 的最新进展正在改变制造业。MAM 的大多数研究和市场采用都集中在粉末床熔合 (PBF) 上,而对定向能量沉积 (DED)、粘合剂喷射 (BJ) 和金属材料挤压 (MEX) 的关注较少,这些技术现在才达到工业化水平。MAM 工艺可用性的提高为中小企业提供了更广泛的选择,开辟了以前无法获得的新机会。然而,尽管最近的技术改进拓宽了潜在的应用范围,但这些工艺是否适合中小企业工业使用尚不清楚。中小企业目前在采用 MAM 方面面临困难,原因是复杂性和成本。此外,现有文献往往忽视了中小企业的独特特征和需求,使他们很难确定最合适的 MAM 工艺。本研究通过使用模糊逻辑方法来评估 PBF、DED、BJ 和 MEX 的技术特性来解决这一差距,重点关注它们与中小企业要求的兼容性。根据成本、复杂性、能耗、机械质量、几何质量、速度和市场需求等标准对每个流程进行排名。通过对数归一化和缩放来完善评估,从而形成从 1 到 5 的综合评分系统。基于这些发现,提出了一个以中小企业为中心的评估矩阵,以指导中小企业根据其特定情况选择最合适的 MAM 流程。该矩阵促进了明智而有效的采用策略,并通过实际示例说明了每个 MAM 流程在中小企业环境中的应用。
1 植物生理学和分子生物学实验室,农业工业研究所,农业科学与自然资源系,农业科学与环境学院及植物、土壤相互作用和自然资源生物技术中心,科学和技术生物资源中心,拉弗龙特拉大学,特木科 1145,智利; h.gajardo01@ufromai.cl(HAG); olmang03@gmail.com (OG-E.) 2 哥斯达黎加理工学院生物学院生物技术研究中心,卡塔戈 30101,哥斯达黎加 3 巴西圣保罗大学路易斯德凯罗斯农业学院 (ESALQ) 生物科学系,皮拉西卡巴 13418-900; boscarolfp@gmail.com (PBF); hecarrer@usp.br (HC) * 通信地址:leon.bravo@ufrontera.cl † 这些作者对这项工作做出了同等贡献。
1. 简介 作为熔化 Inconel 625 粉末和构建部件的能源,已经开发出来 [2]。据报道,生产 Inconel 625 的两类 AM 工艺是粉末床熔合 (PBF) 和定向能量沉积 (DED) [3]。DED 是一种 AM 技术,它通过同时将材料(粉末或线材)输送到由聚焦能量源(激光、电子束或等离子弧)产生的熔池中,以逐层运动的方式添加材料 [4]。该技术已成功引入工业领域,因为它是一种更经济的替代方案,可用于翻新机械零件、模具等中的磨损和受损区域。此外,DED 已用于无需支撑结构辅助构建形状复杂的部件 [5]。尽管 DED 技术才刚刚开始广泛应用,其销量呈指数级增长
摘要:本文讨论了不同形式的粉末床熔合 (PBF) 技术,即激光粉末床熔合 (LPBF)、电子束粉末床熔合 (EB-PBF) 和大面积脉冲激光粉末床熔合 (L-APBF)。多金属增材制造面临的挑战,包括材料兼容性、孔隙率、裂纹、合金元素损失和氧化物夹杂物,已得到广泛讨论。为克服这些挑战提出的解决方案包括优化打印参数、使用支撑结构和后处理技术。未来需要对金属复合材料、功能梯度材料、多合金结构和具有定制性能的材料进行研究,以应对这些挑战并提高最终产品的质量和可靠性。多金属增材制造的进步可以为各个行业带来巨大的利益。
为了推进粉末床熔合 (PBF) 和吹粉沉积 (BPD) 等增材制造 (AM) 方法,有必要对这些部件进行特性分析,并了解它们与粉末冶金、铸造和锻造产品等其他工艺的不同之处。AM 进一步扩展到新市场将依赖于各种后处理方法的开发,例如表面处理。为了评估吹粉沉积 (BPD) 中沉积规模的下限,生产了公称 1 毫米薄壁 Inconel 625 样品。本研究评估了各种表面处理方法的效果,例如化学加速振动精加工 (CAVF) 和化学铣削 (CM)。通过对薄壁 Inconel 625 的机械性能和微观结构比较了不同的表面处理方法。本研究发现薄壁 BPD 工艺中的微观结构变化妨碍了对不同表面处理效果的评估。本研究强调需要将得到的微观结构与机械性能联系起来以理解结果。