摘要 — 随着美国可再生能源渗透率的提高,通过提供足够的频率控制能力来维持低惯性电网的稳定性和可靠性成为一项挑战。先进的抽水蓄能技术 (APSH) 不仅作为能源供应商,而且作为辅助服务提供商,有望在未来电网中发挥重要作用。本文研究了使用四元抽水蓄能水电 (Q-PSH) 作为新提出的 APSH 技术之一来提供一次频率响应的影响。为了量化 Q-PSH 对美国西部互联频率响应的影响,在 GE 正序负荷流 (PSLF) 平台上开发了一个用户定义的 Q-PSH 动态模型,并在一系列详细的美国西部电力协调委员会 (WECC) 规划案例中实施,其中可再生能源渗透率分别为 20%、40%、60% 和 80%。仿真结果表明,与传统 PSH 相比,Q-PSH 有助于改善频率最低点和稳定频率。
摘要:本文提出了一种经济-环境-技术调度 (EETD) 模型,适用于调整后的 IEEE 30 总线和 IEEE 57 总线系统,包括热能和高渗透率的可再生能源 (RES)。总燃料成本、排放水平、功率损耗、电压偏差和电压稳定性是这项工作要解决的五个目标。问题公式中包含大量等式和不等式约束。元启发式优化方法——冠状病毒群体免疫优化器 (CHIO)、瓶瓶罐罐算法 (SSA) 和蚁狮优化器 (ALO)——用于确定发电成本、排放、电压偏差、损耗和电压稳定性解决方案的最佳方案。回顾了几种场景,以验证定义的优化模型的解决问题的能力。研究了许多场景,以验证优化模型解决问题的能力。利用层次分析法 (AHP),通过加权求和法将多目标问题转化为规范化的单目标问题。此外,还提出了按与理想解的相似性排序 (TOPSIS) 技术来确定帕累托替代方案的最优值。最终,所取得的结果表明,所提出的 CHIO 在 EETD 问题解决中执行了其他方法。
摘要:由于惯性较低且缺乏与其他电网的互连,孤立电网很脆弱。随着不可调度可再生能源的普及,此类孤立电网的脆弱性进一步增加。印度政府已提出多个项目来提高安达曼和尼科巴群岛电网的光伏系统 (PV) 普及率。本文研究了由柴油和天然气发电机、光伏和电池储能系统 (BESS) 供电的孤立电网的能源和备用发电联合随机调度。所提出的随机调度模型考虑了广泛的概率预测情景,而不是假设单点预测的确定性模型。因此,它为广泛的光伏电力预测情景提供了技术上可行的最佳解决方案。本研究开发的模型的显著特点是纳入了随机约束,这些约束代表 (i) 光伏和 BESS 之间的协调、(ii) 备用约束、(iii) 电池充电/放电限制约束,以及 (iv) 确保调度决策技术可行性的非预期约束。所提出的模型在南安达曼岛的数据集上得到验证。结果揭示了所提出的随机调度模型对不同发电组合场景的适用性和可行性。
摘要 — 片上系统 (SoC) 的使用和应用日益广泛,导致这些架构发生了巨大的现代化。对于现代 SoC 设计,由于包含大量复杂且异构的知识产权 (IP) 及其隐私保护声明,因此存在各种高度敏感的资产。必须保护这些资产免受任何未经授权的访问和各种攻击。获取此类资产的攻击可以通过不同的来源完成,包括恶意 IP、恶意或易受攻击的固件/软件、不可靠和不安全的互连和通信协议以及通过功率/性能配置文件的侧信道漏洞。任何未经授权访问此类高度敏感的资产都可能导致原始设备制造商 (OEM) 的公司机密泄露或最终用户的身份被盗。与 SoC 架构的功能测试和验证的巨大进步不同,安全验证仍在兴起,学术界和工业界对此的努力很少。不幸的是,SoC 架构的现代化与其安全验证方法之间存在巨大差距。由于现代电子设计自动化 (EDA) 工具中缺乏自动化的 SoC 安全验证,本文全面概述了作为 SoC 安全验证过程基础必须实现的要求。通过回顾这些要求,包括创建统一的 SoC 安全验证语言、定义安全策略、制定安全验证等,我们提出了利用模糊测试、渗透和 AI 测试等自改进技术进行安全验证的实现。我们评估了所有挑战和解决可能性,并提供了通过这些自改进技术实现 SoC 安全验证的潜在方法。
1. 引言 电信在任何国家的经济发展中都扮演着关键角色,因此电信行业的增长会对经济的其他部门产生积极影响。电信行业的放松管制使得企业迫切需要提供高质量的产品和服务,从而获得卓越的绩效。企业需要付出更多努力,才能与不断变化的环境保持同步,获得竞争优势,并提高相对于竞争对手的绩效 (Monday,Akinola,Ologbenla & Aladeraji, 2015)。从全球角度来看,随着电信行业的不断发展,企业正面临着因竞争和客户需求变化而产生的不同的绩效挑战 (Singhal, Forst, McClure, Sachedva, Droogenbroek, Baschnonga & Mahajan, 2015)。客户群、数据流量的增长与电信公司的收入增长之间存在差距,例如在欧洲,报告显示数据流量和移动用户增加,但收入却下降了(Oertzen & Asensio,2017)。在非洲,由于国内外更多参与者的进入,电信行业的公司面临着激烈的竞争,从而影响了该行业公司的盈利能力(Djiofack-zebaze & Keck,2009)。根据 Yeboah-asiamah、Narteh 和 Mahmoud(2018)的说法,快速的增长速度加上竞争加剧和市场饱和,导致电信公司面临盈利能力下降、客户流失率高导致客户保留率低以及收入损失产生的成本。根据 Letangule 和 Letting(2012)的说法,肯尼亚的电信公司在竞争日益激烈的市场中运营,因此他们必须制定战略,以预测、创造和有效应对内部和外部环境中出现的变化。 Kipkirong 和 Rabach (2013) 肯定了这一论点,他们承认公司需要积极主动,并制定能够成功应对环境中的实际变化和预期变化的战略。
摘要:通过减少化石燃料的使用,向更环保的能源矩阵过渡已成为控制气候变化的最重要目标之一。可变可再生能源 (VRES) 是一种重要的低碳替代品。然而,它们的多变性和低可预测性会对电力系统的运行产生负面影响。在这个问题上,能源系统建模工具发挥了重要作用。在探索电力系统在不同水平的 VRES 渗透下的行为时,可以确定某些运营和规划策略来平衡变化、减少运营不确定性并提高供应可靠性。在许多发展中国家,缺乏适当的工具来解释这些影响,阻碍了 VRES 的部署潜力。本文介绍了一种针对玻利维亚案例的特定能源系统模型。该模型管理一个数据库,该数据库收集了玻利维亚目前运行的电力系统的相关参数以及计划到 2025 年的投资组合中的参数。从这个数据库中,我们构建了假设情景,使我们能够将玻利维亚电力系统暴露于一组关于同一年的 VRES 渗透和水力储存的替代方案。范围是量化 VRES 整合潜力,从而量化该国跨越式发展更清洁、更具成本效益的能源系统的能力。为此,通过混合整数线性规划 (MILP) 解决机组组合和调度优化问题,该规划通过分支定界法针对每个场景求解约束条件下的成本目标函数。从能源平衡、输电网能力、削减、火力发电位移、水力储能贡献和发电成本等方面评估和比较结果。结果发现,到 2025 年,所提出的系统可以将平均电力成本降低至 0.22 欧元/兆瓦时,并减少高达 2.22 × 10 6 吨(96%)的二氧化碳排放量,并且 VRES 渗透率非常高,但代价是大幅削减发电量。这是通过将 VRES 装机容量增加到 10,142 兆瓦来实现的。结果是,高达 7.07 TWh(97%)的热力发电被高达 8.84 TWh(75%)的负载由 VRES 覆盖。
摘要:通过减少化石燃料的使用过渡到更环保的能源矩阵已成为控制气候变化的最重要目标之一。可变可再生能源(VRE)是中央低碳替代品。尽管如此,它们的可变性和低可预测性会对电源系统的运行产生负面影响。在这个问题上,能源系统建模工具起着基本作用。在探索电源系统的行为与不同级别的VRE渗透到通过它们的不同级别时,可以确定某些操作和计划策略,以平衡变化,减少操作不确定性并提高供应可靠性。在许多发展中国家中,缺乏这样的适当工具来说明这些效果阻碍了VRE的部署潜力。本文提出了一个针对玻利维亚情况的特定能量系统模型。该模型管理一个数据库,该数据库与当前正在运行的玻利维亚电力系统的相关参数以及计划在2025年的投资组合中的数据库。从该数据库中,如果构建了什么情况,则使我们能够将玻利维亚电力系统暴露于同一年的VRES渗透和水力存储方面的一组替代方案。范围是量化VRES集成潜力,因此,该国越过更清洁,更具成本效益的能源系统的能力。根据能源平衡,传输网格能力,缩减,热产生位移,水力存储贡献和能源产生成本的评估和比较。为此,通过混合整数线性程序(MILP)解决了单位承诺和调度优化问题,该程序通过分支和切割方法在每种情况下通过分支和切割方法解决成本目标函数。在结果中,发现所提出的系统可以将平均电力成本降低到0.22欧/MWH,并且在2025年到2025年的CO 2排放量的2.22×10 6 T(96%),而VRES的渗透率很高,但以意义不大的削减量为代价。这是通过将VRES安装能力提高到10,142 MW来实现的。因此,高达7.07 TWH(97%)的热产生以高达8.84 TWH(75%)的负载流离失所。
摘要:低碳和可再生能源 (RES) 正迅速成为满足全球电力需求增长并抑制碳排放的关键可持续工具。例如,化石燃料汽车逐渐被电动汽车取代,将不可避免地增加电网基载和峰值需求。在许多发达国家,交通运输部门的电气化进程已经与多吉瓦可再生能源容量的安装、特别是风能和太阳能、对电力存储技术的巨额投资以及最终用户的能源需求管理同步启动。电动汽车 (EV) 市场的扩张为创造更清洁、更具变革性的新能源载体提供了新的机会。例如,与国家电网结合的受管理的电动汽车电池充电和放电配置,即所谓的车辆到电网系统 (V2G),预计将成为减少可再生能源间歇性影响的重要机制。本文对电动汽车的现状及其与电网的联合接口技术进行了广泛的文献综述。主要发现和统计细节来自最新出版物,重点介绍了最新的技术进步、局限性和潜在的未来市场发展。作者认为,电动汽车技术将为能源市场带来巨大的技术创新,汽车既可以作为交通工具,也可以作为与电网 (V2G)、建筑物 (V2B) 和其他 (V2X) 交互的动态能源载体。
摘要:可变可再生能源 (VRE) 的部署增加对确保电力系统可靠运行提出了重大挑战。随着 VRE 渗透率超过 80%,电力系统将需要长时间的储能和灵活性。详细的不确定性分析、识别挑战和提供足够灵活性的机会将有助于在 VRE 来源占比高的情况下实现电力系统网络的平稳运行。因此,本文对电力系统灵活性 (PSF) 进行了全面概述。本综述旨在为研究人员、学者、电力系统规划人员和致力于将 VRE 整合到公用电网以实现这些来源的高份额的工程师提供广泛的电力系统灵活性、PSF 驱动因素、PSF 资源、PSF 规定、用于评估灵活性和灵活性规划的方法。已经彻底审查了 100 多篇关于 PSF 的基本概念、PSF 的驱动因素、PSF 的资源、PSF 的要求、用于评估灵活性的指标、用于测量电力系统网络灵活性水平的方法和方法以及用于 PSF 规划和灵活性规定的方法的研究论文,并从不同维度进行了分类,以便快速参考。
肿瘤治疗仍是世界级挑战之一。在过去的几十年中,纳米药物递送系统在控制药物释放、降低毒副作用、提高治疗效果方面展现出巨大的潜力。纳米粒子(NPs)的可控性和设计灵活性在生物医学应用的精准药物递送平台的开发中引起了越来越多的关注。肿瘤血管内皮的不完整结构为NPs分布到肿瘤部位提供了可行性,而增强渗透和滞留(EPR)效应是NPs递送到实体肿瘤的主要原理。1然而,纳米药物在肿瘤治疗中尚未取得令人满意的治疗效果,这主要是由于在肿瘤内蓄积不足或渗透性差。 2实体肿瘤具有细胞外基质(ECM)密度高、间质液体压力(IFP)高、血管系统异常、淋巴引流受损等特点,3这些对纳米药物在肿瘤内有效蓄积和渗透构成了巨大的障碍。因此,研究人员致力于调节NPs的粒径、形状、表面物理和化学性质来改变其吸收、分布、代谢和排泄行为,以提高治疗效果。粒径是影响纳米药物递送系统最显著的因素之一,包括NPs的血浆清除率、体内分布、EPR效应、组织扩散以及细胞内化等影响。4许多研究证明,粒径在30至200nm之间的NPs可以通过EPR效应有效到达肿瘤部位,但是在这样的粒径范围内,NPs的保留和渗透能力有很大差异。粒径较小的NPs(<50nm)虽然能够深入肿瘤深层,但是由于细胞流出和回流至外周血管,导致其滞留效果较差。5,6相反,粒径较大的NPs(>100nm)在肿瘤内具有较强的滞留效果,因为它们容易被困在肿瘤细胞间的基质中,不易回流被细胞排泄,但同时这些大颗粒又不能深入肿瘤内部。7,8传统的固定尺寸的NPs很难平衡蓄积和渗透,针对这一问题,研究人员提出了一系列智能调节NPs尺寸的策略,包括尺寸增大策略和尺寸收缩策略。这些策略一般为: