光是一种能量形式,其行为可以用波和粒子的性质来描述。电磁辐射的某些性质,例如它从一种介质传播到另一种介质时的折射,可以通过将光描述为波来得到最好的解释。其他性质,例如吸收和发射,最好将光视为粒子来描述。自 20 世纪前 25 年量子力学发展以来,电磁辐射的确切性质仍不清楚。尽管如此,波和粒子行为的双重模型为电磁辐射提供了有用的描述。1.1 发光发光是一门与光谱学密切相关的科学,光谱学是研究物质吸收和发射辐射的一般规律。自古以来,海洋和腐烂有机物中的细菌、萤火虫和萤火虫等发光生物的存在就让人类既困惑又兴奋。对发光这一主题的系统科学研究始于 19 世纪中叶。 1852 年,英国物理学家 GCStokes 发现了这一现象,并提出了发光定律,即现在的斯托克斯定律,该定律指出发射光的波长大于激发辐射的波长。1888 年,德国物理学家 E. Wiedemann 在文献中引入了“发光”(弱辉光)一词。某些物质吸收各种能量后发光而不产生热量的现象称为发光。发光是在各种激发源下获得的。发射光的波长是发光物质的特性,而不是入射辐射的特性。发光系统不断消耗能量来驱动发射过程。通用术语“发光”包括各种各样的发光过程,这些过程的名称源于为其提供动力的各种能量。光致发光包括荧光和磷光,是众多发光类别之一。为了说明发光的多样性,下面介绍一些最常见的发光类型:1. 电致发光:电流通过电离气体时产生。例如气体放电灯。2. 放射性发光:从放射性衰变释放的高能粒子中获取能量。例如发光的镭表盘。3. 摩擦发光:源于希腊语 tribo,意为摩擦。当某些晶体受到压力、挤压或破碎时,就会发出这种发光。例如某些类型的糖晶体。4. 声致发光:在暴露于强声波(压缩)的液体中产生这种发光。5. 化学发光:从化学反应中获取能量。化学键的断裂提供了能量。
数据操作、分析和显示 • 算术(+、-、×、/、附加) • 缩放、标准化和基线减法 • 裁剪 • 网格显示、对数/线性刻度 • 2D、3D、轮廓和颜色图 • 文本显示和编辑选项中的数据显示 • 使用非线性最小二乘拟合程序进行完全衰减数据拟合 • 指数重卷积或尾部拟合 • 1-4 个独立的指数衰减时间,固定或作为自由拟合参数 • 移位参数,固定或作为自由拟合参数 • 背景拟合,固定或作为自由拟合参数 • 卡方拟合优度检验 • 加权残差,Durbin-Watson 参数 • 自相关函数 • 各向异性计算 • 提取时间分辨光谱(TRES 数据切片) • 全面的测量和文件属性用于记录保存 • ASCII/CSV 数据输入和输出选项 • 复制和粘贴选项以方便演示和出版 • 可选的高级荧光寿命数据分析包
5 帕多瓦大学化学科学系,Via Marzolo 1, 35131 帕多瓦,意大利 * 通讯作者:plinio@uniss.it 关键词:六方氮化硼,二维材料,光致发光 摘要 基于六方氮化硼纳米片(h-BNN)的功能光电应用的开发依赖于控制结构缺陷。特别是,已经观察到荧光发射取决于空位和取代缺陷。在目前的研究中,通过超声辅助液相剥离块体对应物获得了少层 h-BNN。制备的样品在可见光范围内表现出微弱的荧光发射,中心在 400nm 左右。通过在不同温度下在空气中氧化引入了定制缺陷。已经观察到氧化 h-BNN 的荧光发射显著增加,在 300°C 下处理的样品的发射强度最大。温度进一步升高(>300°C)会导致荧光猝灭。
与传统的非线性光学晶体(如BAB 2 O 4,KTIOPO 4或LINBO 3)相比,光子对的半导体集成源可能会在泵波长上运行。Bragg反射波导(BRW)的情况也是这种情况,将参数下转换(PDC)靶向电信C波段。藻类合金的大型非线性系数和光的强限制可实现极明亮的集成光子对源。在某些情况下,在BRW中观察到了大量有害的宽带光致发光。我们表明,这主要是由于核心附近线性吸收以及随后在半导体中深杂质水平的电子对辐射重组的结果。对于带有BRW的PDC,我们得出结论,在S波段的长波长端或短C波段附近运行的设备需要短的时间滤波,需要短于1 ns。我们预测,将工作波长转移到L波段会将光致发光量减少70%,并在材料组成中进行少量调整会导致其总还原90%。这样的措施使我们能够提高平均泵功率和/或重复率,这使得积分的光子对源具有芯片多吉格希氏兹对速率的可行,用于将来的设备。
图1:无等值的电子孔重组(左)和CW泵送(右)下的非平衡电子分配。在两个面板中,费米水平都用水平,黑色虚线在能量µ f处描绘。右图:通过从泵浦光束吸收频率ωL的光子通过吸收光子,将低能电子升级为在费米水平上。这些热电子及其相应的热孔的积累受到平衡的松弛限制,这主要是由于电子电子相互作用。在固定方案中,激发与松弛之间的竞争产生了稳定的热电子和孔(红线),各自的职业概率k n和1 -k n。左图:两个电子孔(E-H)重组事件的方案,一个高于费米水平的一个,一个是通过电子的非平衡分布来实现的。相应的状态职业概率由蓝色虚线表示。请注意,k n〜0的夸张值。2已用于简化说明,当逼真的值为k n〜 i l /(10 11 w.cm -2)时,样品处的泵浦强度。请参阅非平衡分布的分析形式的方法和k n的解释。
图1。天然TIO 2:NB(1 1 0)边界结构。(a),(b),(c)电子反向散射衍射(EBSD)图像质量和逆极图(IPF)地图,提供〜
无机闪烁体可以用高能量吸收电离辐射,以瞬时将其转换为低能的光子。(1-3)利用此功能,通过将光电遗传学与可以将光子转换为电信号转换为电信号的光探测器将闪烁体应用于辐射探测器。(4,5)闪烁检测器根据其应用而分为电流和光子计数模式测量值。(6,7),尤其是当前模式类型的检测器集成了一毫秒的信号,并已用于X射线计算机断层扫描(CT)和X射线射线照相的应用中。(8)当前模式类型的闪烁体需要高发射强度,大的有效原子数(z eff),高密度(ρ)和低余辉水平(AL)。但是,由于没有闪烁器满足所有必需的属性,因此已经开发出新的闪烁体。(9-14)基于HFO 2的化合物,例如RE 2 HF 2 O 7(RE = LA,GD,LU)和AE HFO 3(AE = CA,SR,BA)引起了人们的注意,因为它们的大Z eff和Highρ。在先前关于基于HFO 2的闪烁体的报告中,只有Z EFF(65.2)和ρ(6.95 g/cm 3)的Cahfo 3显示出闪烁的光屈服于10,000光子/MEV。(15–21)此外,我们的研究小组研究了用Ti,CE,PR,TB和TM掺杂的Cahfo 3的闪烁特性,(18,21-26)
光致发光光谱是一种广泛应用的表征技术,通常用于表征半导体材料,特别是卤化物钙钛矿太阳能电池材料。它可以直接提供有关复合动力学和过程的信息,以及单个半导体层、具有传输层的层堆栈和完整太阳能电池中自由电荷载流子的内部电化学电位。正确评估和解释光致发光需要考虑适当的激发条件、校准和将适当的近似应用于相当复杂的理论,其中包括辐射复合、非辐射复合、界面复合、电荷转移和光子循环。本文概述了该理论及其在特定卤化物钙钛矿组合物中的应用,说明了在这些材料中应用光致发光分析时应考虑的变量。
摘要:掺杂灯笼的纳米晶体(NCS)能够有效的光子上转换,即吸收长波长光和发射较短的波长光。启用上转换的内部过程是一个复杂的电子过渡和掺杂中心之间的能量转移网络。在这项工作中,我们研究了从β -nayf 4 NCS上的上升转换发射的上升和衰减动力学,并用ER 3+和YB 3+编码。红色和绿色上流排放的上升动力学是非线性的,反映了上转换的非线性性质,并揭示了填充发射状态的机制。激发状态衰减动力学是不符合的。我们使用光子实验揭示了潜在的衰减途径。这些在视觉上揭示了不同上转换途径的贡献,因为每个途径对光学状态的局部密度的系统变化都有明显的响应。此外,光学态的局部密度对仅核心NC的局部密度在质量上与核心 - 壳NC的作用在质量上不同。这是由于产生向上发射的电子水平的喂食与衰减之间的平衡所致。对此处提供的上转换动力学的理解可能会导致更好的成像和传感方法依靠上转换寿命或指导掺杂剂浓度的合理优化以使其更明亮。关键字:胶体纳米晶体,上转换,灯笼离子,激发状态动力学,光学状态的局部密度
硅光子学产业的快速发展有望带来非电子技术前所未有的制造经济。除了大批量生产的潜力之外,硅光子学还为大规模光子处理架构开辟了可能性,而这在光纤或 III-V 族平台中是无法想象的 [1、2、3]。所有光子系统都需要光源。由于硅具有间接带隙,因此在室温下不易发光。因此,硅光子学的大部分研究都使用与光纤耦合的片上外部光源。使用外部光源会带来光纤封装和光纤到芯片插入损耗的巨大负担。人们已经投入了大量研究来开发用于硅光子的集成光源 [4]。每种方法都有优点和缺点。这些方法包括稀土元素掺杂(低亮度)、III-V 量子阱的晶圆键合 [ 5 ](非单片集成步骤)、III-V 量子点的外延生长 [ 6 ](专门的外延步骤)和锗的带隙工程 [ 7 ](低屈服应变工程)。所有这些方法