a 天体生物学中心 (CAB),CSIC-INTA,Carretera de Ajalvir km 4, 28850, Torrej ´ on de Ardoz,马德里,西班牙 b 天体生物学 OU,科学、技术、工程和数学学院,开放大学,米尔顿凯恩斯,英国 c 路易斯安那州立大学地质与地球物理系,路易斯安那州巴吞鲁日,美国 d 天体生物学研究组,航空航天医学研究所,DLR,科隆,德国 e LESIA,巴黎天文台,CNRS,PSL Univ.,92195,Meudon Cedex,法国 f 生物医学问题研究所,123007,Khoroshevskoye shosse 76a,莫斯科,俄罗斯 g 巴黎东大学和巴黎城大学,CNRS,LISA,F-94010,Cr ´ eteil,法国 h阿联酋航天局,阿拉伯联合酋长国 i 美国宇航局总部,华盛顿特区,20546,美国 j 南特大学、昂热大学、勒芒大学、法国国家科学研究院,UMR 6112,行星地球科学和地球科学实验室,F-44000,南特,法国 k 神户大学行星学系,657-8501,神户,日本 l 欧洲航天局 (ESA) - ESTEC 独立安全办公室 (TEC-QI) 行星保护官员,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 m 东京大学地球与行星科学系,东京都文京区本乡 7-3-1,113-0033,日本 n 印度空间研究组织总部副主任 o 欧洲航天局 (ESA) – ESTEC,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 p 联合国维也纳办事处外层空间事务厅政策和法律事务科委员会,奥地利 q 日本宇宙航空研究开发机构(JAXA),宇宙航行科学研究所(ISAS),日本神奈川 r 俄罗斯科学院空间研究所行星物理系,俄罗斯莫斯科 s 康奈尔大学,伊萨卡,纽约州,14853-6801,美国 t 中国国家航天局,北京,中国 u 意大利航天局(ASI),意大利罗马 v 法国国家空间研究中心(CNES),法国 w 中国空间技术研究院神舟航天生物技术集团空间微生物实验室,北京,中国
摘要将近半个世纪前,两篇论文假定使用数学模型的月球熔岩洞穴的可能性。今天,我们拥有一系列轨道和飞行的卫星和调查工具,现在我们已经在太阳系中获得了洞穴数据,包括识别月球,火星和至少九个行星的潜在洞穴入口。这些发现引起了对行星洞穴的研究。为了帮助发展这一领域,我们利用跨学科群体的专业知识来确定探索地球以外洞穴的战略。主要关注天体生物学,洞穴环境,地质学,机器人技术,仪器和人类探索,我们的目标是生产一个框架,以指导这一子阶级至少在接下来的十年中。为此,我们首先汇集了198个科学和工程问题的列表。然后,通过一系列社会调查,114位科学家和工程师将榜单列为前53位最高优先级问题。这项练习导致确定需要强大发展的新兴和关键研究领域,以最终支持对行星洞穴的机器人任务,主要是月球和/或火星。凭借必要的金融投资和机构支持,在接下来的十年中实现这些必要的进步所需的研究和技术发展
a 天体生物学中心 (CAB),CSIC-INTA,Carretera de Ajalvir km 4, 28850, Torrej ´ on de Ardoz,马德里,西班牙 b 天体生物学 OU,科学、技术、工程和数学学院,开放大学,米尔顿凯恩斯,英国 c 路易斯安那州立大学地质与地球物理系,路易斯安那州巴吞鲁日,美国 d 天体生物学研究组,航空航天医学研究所,DLR,科隆,德国 e LESIA,巴黎天文台,CNRS,PSL Univ.,92195,Meudon Cedex,法国 f 生物医学问题研究所,123007,Khoroshevskoye shosse 76a,莫斯科,俄罗斯 g 巴黎东大学和巴黎城大学,CNRS,LISA,F-94010,Cr ´ eteil,法国 h阿联酋航天局,阿拉伯联合酋长国 i 美国宇航局总部,华盛顿特区,20546,美国 j 南特大学、昂热大学、勒芒大学、法国国家科学研究院,UMR 6112,行星地球科学和地球科学实验室,F-44000,南特,法国 k 神户大学行星学系,657-8501,神户,日本 l 欧洲航天局 (ESA) - ESTEC 独立安全办公室 (TEC-QI) 行星保护官员,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 m 东京大学地球与行星科学系,东京都文京区本乡 7-3-1,113-0033,日本 n 印度空间研究组织总部副主任 o 欧洲航天局 (ESA) – ESTEC,Keplerlaan 1, 2201,AZ,诺德维克,荷兰 p 联合国维也纳办事处外层空间事务厅政策和法律事务科委员会,奥地利 q 日本宇宙航空研究开发机构(JAXA),宇宙航行科学研究所(ISAS),日本神奈川 r 俄罗斯科学院空间研究所行星物理系,俄罗斯莫斯科 s 康奈尔大学,伊萨卡,纽约州,14853-6801,美国 t 中国国家航天局,北京,中国 u 意大利航天局(ASI),意大利罗马 v 法国国家空间研究中心(CNES),法国 w 中国空间技术研究院神舟航天生物技术集团空间微生物实验室,北京,中国
微电子与纳米技术 - Shamsuddin 研究中心 (MiNT-SRC)、马来西亚敦胡先翁大学综合工程学院,86400 Parit Raja,
行星数据系统 (PDS) 成立近三十年来取得了长足进步,而现在形势已开始好转,不再像 1982 年那样面临行星数据丢失的威胁 [1]。国际归档标准不断发展,首先导致实施基于 PDS3 标准的 PDS 档案,并在过去十年中从 PDS3 转变为 PDS4。这一演变主要由与 PDS 最初启动时相同的动机驱动:用户需求和期望(两个发现)、数据可发现性(三个发现)和数据可用性(三个发现)。这些功能由工具和文件格式(两个发现)以及在线处理和分析(一个发现)支持。必须考虑趋势的变化以及颠覆性技术的可能性。这些变化反映在数据量、种类、复杂性和数据提供者数量的增加(两个发现)、可能增加实验室数据和实物样本(两个发现)以及 PDS 结构和治理的潜在增强(三个发现)中。在介绍 PDS(第 1 章)并阐述其特点(第 2 章)之后,我们将详细介绍 PDS 面临的挑战(第 3 章)、详细的发现和建议的补救措施(第 4 章),以及未来可能预示的结论和总结(第 5 章)。对各种挑战的具体应对措施取决于技术的外部变化(新商用硬件带来的机遇以及计算机安全挑战)、机器人行星任务(国内和国际)的数据生成,以及不断变化的利益相关者群体的数据需求和要求。作为一个复杂的不断发展的系统,PDS 必须不断应对新的压力和机遇。反过来,这些又会产生用户的需求和期望,尤其是 PDS 利益相关者的需求和期望(发现 I),并可能导致 PDS 能够承担的任务与利益相关者的期望不匹配(发现 II)。支持该系统的关键是拥有一个灵活且可扩展的架构,例如 PDS4 信息模型以及软件服务和工具,以适应不同的和相互竞争的优先事项和需求。虽然相互竞争的优先事项对于分布式、国际采用的系统来说是现实,但随着优先事项的确定和资金的到位,PDS4 可以随着时间的推移而发展和扩展。PDS 存储的数据必须是可发现的,即可以轻松高效地搜索(发现 III),并且可以与其他档案互操作(发现 IV),并且易于引用以便多个研究人员使用(发现 V)。这一响应的关键是相关元数据的现代化,这得益于 PDS4 信息模型及其实施(发现 VI),以及该模型如何实现对数据的更好访问(发现 VII)。一个相关的、重要的、一项重大工作是将适当的 PDS3 档案迁移到 PDS4,以便使与当前馆藏相关的所有相关元数据现代化。这项任务对于仍在运行的、已“纳入”PDS3 要求的任务来说尤其紧迫。由于 PDS4 所需的某些独特元数据目前存放在
摘要 全球新兴技术格局日益受到人工智能 (AI) 炒作的影响,这一现象对当今正在创建的全球 AI 叙事具有重大的大规模影响。本文旨在根据其核心机制剖析 AI 炒作现象,将当前浪潮与历史 AI 炒作进行比较,得出结论:当前的炒作在量级、规模以及地球和社会成本方面是历史上无与伦比的。我们识别并讨论了助长 AI 炒作的社会技术机制,包括拟人化、自称 AI“专家”的人数激增、地缘政治和私营部门的“害怕错过”趋势以及新兴技术中“AI”一词的过度使用和误用。本文的第二部分试图强调当前 AI 炒作经常被忽视的成本。我们研究了它的地球成本,因为 AI 炒作对有限的资源和能源消耗施加了巨大压力。此外,我们还关注人工智能炒作与社会经济不公正之间的联系,包括通过巨大的财富再分配和人类智能成本来延续社会不平等。在结论中,我们提供了关于如何减轻未来人工智能炒作的影响的见解。我们提出了关于开发者、监管者、部署者和公众如何驾驭人工智能炒作、创新、投资和科学探索之间关系的建议,同时应对关键的社会和环境挑战。
提案人指南 1.0 NASA 行星风成实验室 (PAL) 1.1 什么是 PAL?行星风成实验室 (PAL) 是一种用于在不同行星大气环境下进行风成过程(风吹粒子)控制实验和模拟的设施,包括地球、火星和土星的卫星土卫六。PAL 目前由 NASA 的行星科学部门提供支持(2014 年之前,PAL 由 NASA 的行星地质和地球物理学 (PG&G) 计划提供支持)。PAL 包括位于加利福尼亚州莫菲特菲尔德的 NASA-Ames 研究中心 (ARC) 的设备和设施,亚利桑那州立大学 (ASU) 位于亚利桑那州坦佩,拥有单独的设备来支持 PAL 活动。PAL 包括美国最大的压力室之一,用于进行低压研究。PAL 可在受控实验室条件下对风成过程进行科学研究,并可对 NASA 太阳系任务的航天器仪器和组件进行测试和校准,包括需要大量低气压的任务。PAL 包括:(1) 火星表面风洞 (MARSWIT) 和 (2) 土卫六风洞 (TWT),位于加利福尼亚州山景城 NASA ARC 的结构动力学大楼 (N-242) 内,由亚利桑那州立大学管理。MARSWIT 和 TWT 由 NASA-Ames 的商店、仪器设施和成像服务提供支持。ARC 的 PAL 设施还配备了一名全职技术人员(在 ARC 工作的 ASU 员工),为行星用户提供服务。亚利桑那州立大学坦佩校区的配套设施包括环境压力/温度风洞 (ASUWIT)。ASU 还拥有涡流(尘卷风)发生器 (ASUVG),但目前归富尔顿工程学院所有(可协商用于行星研究)。ASUWIT 是 ASU 地球与空间探索学院 (SESE) 的一部分,由 SESE 教授 Ian Walker 负责运营。ASUWIT 由 ASU 的 Ronald Greeley 中心的工作人员提供支持。NASA-Ames 的火星表面风洞 (MARSWIT) 于 1976 年投入运行,用于研究陆地和火星条件下风夹带粒子的物理学,进行流场建模实验以评估从小岩石到地貌(缩放)如陨石坑等尺度上的风蚀和沉积,并在火星大气条件下测试航天器仪器和其他组件。MARSWIT 是一个 13 米长的开路边界层风洞,位于一个大型环境室内,在 1 巴至 5 毫巴的大气压下运行,在 1 巴时最大速度为 10.5 米/秒,在 5 毫巴时最大速度为 100 米/秒。该风洞采用开路设计,但位于一个大型压力室的地板上,内部高度为 30 米,内部容积为 13,000 立方米。对于低压风洞运行,将腔室密封并抽空,内部的开路风洞在低压环境中运行。抽空如此大腔室的内部压力需要大量电力,这通常非常昂贵。PAL 从热物理设施的蒸汽真空系统获取真空能量,大约 45 分钟内即可抽真空至火星模拟压力 (4 托)。由于真空系统运行成本高,双方达成协议,PAL 几乎只在与其他赞助 NASA-Ames 蒸汽工厂活动的 NASA-Ames 项目/设施合作时才抽真空。这种安排非常经济高效,但需要提前安排低压运行(需要抽空)。除了此协议外,还提供预留真空服务,前提是提供足够的资金并且没有时间安排冲突。
在不同行星大气环境下对风成过程(风吹粒子)进行实验和模拟,包括地球、火星和土星的卫星土卫六。PAL 目前由 NASA 行星科学部支持(2014 年之前,PAL 由 NASA 行星地质和地球物理学 (PG&G) 计划支持)。PAL 包括位于加利福尼亚州莫菲特菲尔德的 NASA-Ames 研究中心 (ARC) 的设备和设施,亚利桑那州坦佩的亚利桑那州立大学 (ASU) 拥有单独的设备来支持 PAL 活动。PAL 包括美国最大的低压研究压力室之一。PAL 能够在受控实验室条件下对风成过程进行科学研究,并能够为 NASA 的太阳系任务测试和校准航天器仪器和组件,包括那些需要大量低气压的任务。PAL 包括:(1) 火星表面风洞 (MARSWIT) 和 (2) 土卫六风洞
高级管理是一个跨学科的研究和开发领域,旨在改进现有天体材料收藏中的管理和样本采集实践,并为未来的样本返回活动提供支持。高级管理的主要结果是减少和量化天体材料的污染,并保持从任务开始到科学分析的所有样本的科学完整性。在未来十年,NASA 应该支持高级管理研究和监测工作,因为它们涉及改进我们现有的收藏和为当前和未来天体材料采集活动的样本做准备。我们在此重点介绍未来十年 NASA 支持的对样本科学成功至关重要的五项高级管理活动,包括:1) 支持作为样本返回任务的一部分建立污染知识收集的努力,这需要从样本返回任务规划的最早阶段就开始参与管理;2) 支持陨石和宇宙尘埃等地球天体材料收集活动,因为它们代表了相对廉价的样本采集活动,可以继续扩大 NASA 的天体材料收藏并确保新发现的实现; 3) 准备在“冷”条件下管理和处理样本,以便从富含挥发物的太阳系目标(如月球表面或彗星的永久阴影区域)带回样本;4) 确定如何最好地将洁净室技术和生物安全技术结合到一个基础设施中,以支持对被指定为第 V 类:受限地球返回的天体的样本进行管理;5) 支持对管理实验室的实时监控和测试,以验证样本处理环境是否从无机、有机和生物污染的角度保持清洁。简介
空间研究委员会的行星保护政策是全球技术官僚治理的胜利。该政策由一群科学专家制定,随后受到科学和空间界的高度重视。然而,由于空间研究委员会是一个没有任何法律授权的独立组织,行星保护政策是所谓“软法”或不具约束力的国际文书的一个例子,简而言之,没有人有任何法律义务遵守它们。该政策与《外层空间条约》第九条及其呼吁避免对月球和其他天体造成“有害污染”的规定相关。虽然地球轨道以外的空间活动一直是政府科学空间机构的专属领域,但这并没有造成什么问题。然而,随着私人和“非科学”空间活动的激增并开始将其范围扩展到地球轨道以外,行星保护政策正在接受考验。本文将探讨在“新太空”时代制定和维持有效的行星保护制度所面临的挑战。这将涉及现有政策及其所处的治理框架。然而,不仅要考虑和了解政策本身的具体内容,还要考虑和了解政策必要性的科学基础。最后,本文将考虑是否需要更广泛的“环境”框架,因为太空活动的类型和地点多种多样。