在恒定pH下的讨论和讨论,盐的线性梯度将以提高拓扑异构形式的复杂性顺序解脱质粒DNA。由于不同形式的质粒DNA之间的相对电荷方差相对较高,因此可以使用离子交换柱有效分离它们。通过强阴离子交换分离时,发现质粒DNA样品包含两个分辨峰。假定较大的,后来的洗脱峰是超螺旋质粒DNA,而两个质量较小(大约是主要峰的0.5%)是质粒的线性形式(图1)。图2覆盖该质粒样品,并用稀释剂注入,证实较小的峰与质粒有关。超卷质质粒在强阴离子交换(SAX)固定相上表现出更高的保留率,并具有基线分离。
使用悬垂引物在PCR产物的末端添加悬垂序列来扩增感兴趣的序列。悬垂序列的长度取决于用于吉布森组件的商业套件。如果使用了来自新英格兰Biolabs(NEB)的HIFI组装主混合物,则足够的20个碱基对。
基于核酸调节细胞活性的治疗方法最近引起了人们的注意。这些分子来自复杂的生物技术过程,需要有效的制造策略,高纯度和精确的质量控制才能用作生物制药。基于核酸的生物治疗剂制造的最关键和最耗时的步骤之一是它们的纯化,这主要是由于提取物的复杂性。在这项研究中,描述了一种简单,有效且可靠的方法,用于分离和阐明复杂样品的质粒DNA(pDNA)。该方法基于使用原始碳纳米管(CNT)的选择性捕获RNA和其他杂质的选择性捕获。研究了带有不同直径的多壁CNT(MWCNT),以确定其吸附能力,并解决其相互作用和区分核酸之间的能力。结果表明,MWCNT优先与RNA相互作用,并且较小的MWCNT具有较高的吸附能力,如较高的特定表面积所预期的那样。总体而言,这项研究表明,与初始水平相比,MWCNT显着降低了杂质(即RNA,GDNA和蛋白质)的水平约为83.6%,从而使溶液中澄清的pDNA在整个恢复过程中保持稳定性。此方法促进了治疗应用中pDNA的预纯化。
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年6月12日。 https://doi.org/10.1101/2024.06.12.598411 doi:Biorxiv Preprint
本论文是由Ut Tyler的Scholar Works的生物技术带给您的。已被UT Tyler的学者工作授权管理员所接受的生物技术本学这些纳入。有关更多信息,请联系tgullings@uttyler.edu。
Chang 等,2012;Fazili 等,2016;Rossi 等,2018)。研究表明,赋予 hvKp 高毒力表型的最典型的毒力因子由位于毒力质粒上的基因编码,其中包括 iuc/iro(铁载体 aerobactin/salmochelin 的生物合成基因)、rmpA/rmpA2(增加荚膜产量的调节剂)和 peg-344(功能未知的代谢转运蛋白)(Russo and Marr,2019)。因此,大型毒力质粒上毒力基因的丢失将显著降低 hvKp 的毒力。尽管对hvKp毒力机制的研究已经取得了很大进展,但仍有许多问题尚未揭示:例如,毒力基因之间如何相互作用,它们如何调控hvKp的高毒力表型,以及毒力因子如何与宿主免疫系统相互作用。针对hvKp毒力质粒的有效基因编辑方法对于理解这些未知机制至关重要。目前,对hvKp毒力质粒进行基因敲除的报道很少,主要依赖于随机转座子插入和自杀质粒介导的同源重组(Cheng等,2010;
摘要 志贺氏菌是一种革兰氏阴性细菌,可侵入人体肠道上皮。由此引起的感染志贺氏菌病是最致命的细菌性腹泻病。有关决定志贺氏菌病理生理的基因(包括染色体和毒力质粒)的大部分信息都是通过经典反向遗传学获得的。然而,流行的诱变技术的技术限制使得单次反应中只能产生少量突变体,从而阻碍了大规模的志贺氏菌靶向诱变和随后的表型评估。我们采用了一种 CRISPR-Cas 依赖性方法,其中切口酶 Cas9 和胞苷脱氨酶融合在单向导 RNA(sgRNA)的引导下引入靶向 C ! T 转换,导致内部终止密码子和翻译过早终止。在使用 mCherry 荧光报告基因的原理验证实验中,我们能够在大肠杆菌和志贺氏菌中生成功能丧失突变体,效率高达 100%。使用改进的波动分析,我们确定在优化条件下,由 Cas9 脱氨酶融合引入的非靶向突变的频率与自发突变在同一范围内,这使我们的方法成为细菌诱变的安全选择。此外,我们对该方法进行了编程,以突变已充分表征的染色体和质粒携带的志贺氏菌基因,并发现突变体的表型与已报道的基因缺失突变体的表型相似,在表型水平上没有明显的极性效应。该方法可用于 96 孔板格式,以提高通量并在几天内生成一系列靶向功能丧失突变体。
伊蚊会将包括黄病毒在内的多种病原体传播给人类,导致高发病率和死亡率。由于适应性和气候变化,这些蚊媒预计将在新的地理区域定居,从而使更多的蚊子面临感染风险。因此,控制伊蚊媒介对于防止疾病传播是必要的。最近,遗传学方法在媒介控制方面显示出良好的前景;然而,操纵蚊子基因组的工具和方法相当有限。虽然 CRISPR-Cas9 系统已被用于伊蚊的基因编辑目的,但基于 dCas9 的基因转录控制仍未得到探索。在本研究中,我们报告了 CRISPR 激活系统在伊蚊细胞中的实施。为此,我们设计、构建和测试了一种基于双质粒的策略,该策略允许表达 dCas9-VPR 和靶向向导 RNA 以及报告基因盒。荧光报告基因水平的定量分析显示了强大的过表达,验证了伊蚊细胞中的 CRISPR 激活。该策略和生物学部分将成为基于合成转录因子的伊蚊基因强劲上调的有用资源,以应用合成生物学方法进行媒介控制。
CAS12A是V-A型CRISPR-CAS RNA引导的内切酶。它在特定位点切割了dsDNA,然后在体外反式跨体内激活以非特征ssDNA的裂解。反式活性的免疫功能仍然未知。为了解决这个问题,我们在大肠杆菌中构建了一个CAS12A靶向系统,其中CAS12A裂解了高拷贝靶质粒以释放反式ssDNA裂解活性。然后,我们分析了Cas12a靶向对非目标质粒和ssDNA噬菌体的影响。结果表明,CAS12A有效地消除了目标质粒,但对噬菌体的非目标质粒或鼠疫形成的维持没有影响。此外,有助于靶质粒耗竭的两间隔crispr阵列仍然对非目标质粒或噬菌体没有可检测的影响。一起,数据表明CAS12A的反式ssDNA切割不会导致体内免疫力。
。CC-BY-NC-ND 4.0 国际许可,根据未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2024 年 5 月 8 日发布。;https://doi.org/10.1101/2023.09.26.559507 doi:bioRxiv 预印本