摘要:丙戊酸 (VPA) 是一种治疗癫痫和躁郁症的有效常用药物。然而,母亲在怀孕期间接受 VPA 治疗,其所生的孩子患自闭症谱系障碍 (ASD) 的几率更高。尽管 VPA 可能在细胞水平上损害大脑发育,但 VPA 诱发 ASD 的机制尚未完全解决。先前的研究发现,VPA 治疗可显著降低神经元 δ-catenin mRNA 水平。δ-catenin 对谷氨酸能突触的控制很重要,与 ASD 密切相关。有趣的是,VPA 抑制发育中的神经元中的树突形态形成,这也存在于缺乏 δ-catenin 表达的神经元中。因此,我们假设,产前接触 VPA 会显著降低大脑中的 δ-catenin 水平,从而破坏谷氨酸能突触,导致 ASD 的发展。在这里,我们发现 VPA 损害了培养的小鼠皮质神经元的发育,而这种损害可以通过提高 δ-catenin 表达来逆转。产前暴露于 VPA 显著降低了新生幼崽的突触 δ-catenin 水平并损害了超声波发声 (USV)。重要的是,我们发现产前 VPA 治疗显著降低了下丘脑弓状核中的神经元激活,这对于动物在与巢穴隔离后产生 USV 非常重要。最后,VPA 显著降低了小鼠新生儿的 AMPA 受体和突触后密度 95 (PSD-95) 水平,PSD-95 是兴奋性突触中的关键支架蛋白,这可能导致神经元激活减少。因此,这些结果表明 VPA 诱导的 ASD 病理可能是由 δ-catenin 功能丧失介导的。
摘要:前连合(AC)是一束轴突,它们在嗅觉区域(例如嗅球(OB),前嗅觉核(AON)和梨状皮层(PC)等嗅觉区域之间交流,在嗅觉区域之间进行交流。以前,我们报道说,AC的发展是一个高度调节的过程,涉及渐进式和回归的增长策略,在E17胚胎开发结束时达到对侧。同时,对侧结构中的树博化延迟到产后3-5天。在这里,我们使用与EGFP或MCHERRY转导的腺相关病毒(AAVS)向量,我们在OB,AON和PC中注入了嗅觉区域,以研究穿过AC的对侧神经支配场。我们发现,来自OB的对侧轴突仅穿过AC的前肢,以投射到颗粒细胞层(GCL)中。相比之下,轴突源自前PC项目,进入对侧OB,AON和PC。这些轴突不仅将其释放到GCL中,还可以伸入二尖瓣和外部丛状层,以及前PC层1B。,我们通过AC的后肢专门观察到后PC项目,专门于对侧PC,从1B层进行了根本性的塑造。内一核核仅通过AC的后肢向后PC进行。共同展示了嗅觉结构中对侧树博化的详细图,这对于理解脑半球之间嗅觉信息的处理至关重要。
摘要:在成年啮齿动物中,空间学习可增加海马齿状回的神经发生。此前,啮齿动物大脑中另一个主要的神经发生区,即脑室下区 (SVZ),尚未发现类似的效应。尽管大多数 SVZ 产生的神经元会前往嗅球,但一小部分神经元会横向迁移到纹状体。考虑到纹状体在运动学习中的作用,我们想知道运动学习是否会增加成年 SVZ 神经发生。为了验证这一假设,成年雄性 C57Bl/6 小鼠接受了转棒训练,并注射了 5-乙炔基-2'-脱氧尿苷 (EdU) 来标记分裂细胞。使用了两个对照组:模拟训练小鼠静止坐在静止的转棒上,而幼稚小鼠则留在笼子里。在任务完成后 1、7 和 30 天收集大脑,并用 EdU、双皮质素 (DCX) 和 NeuN 进行免疫组织化学处理,以定量分析不同时间点的神经元增殖和存活情况。FACS 对 EdU 标记的细胞核进行分选作为次要测量。我们发现运动学习会增加 SVZ 神经发生,任务完成后一天,与模拟训练小鼠相比,转棒小鼠的 EdU+ 细胞增加了 1.4 倍,总 EdU 强度增加了 1.8 倍。重要的是,一组使用跑步机代替转棒的对照实验表明,在排除运动作为混杂因素的情况下,跑步小鼠和静止小鼠的 SVZ EdU 标记没有差异。转棒小鼠和模拟训练小鼠的 SVZ 中的 DCX 表达最初升高了 1.7 倍,但 7 天后在模拟训练小鼠中恢复到基线水平,而在转棒训练小鼠中仍保持较高水平。这些结果表明,学习诱导的神经发生会在运动训练后的一周内持续进行。转棒训练任务的影响在纹状体中也持续存在一段时间。在训练后 7 天和 30 天,转棒训练小鼠的纹状体 EdU+ 细胞更加丰富。此外,在训练后 7 天,纹状体中存在迁移的 EdU+ / DCX+ 神经元,尽管很少见,但在训练后 30 天仍可识别出存活的纹状体 EdU+ / NeuN+ 神经元。总体而言,这些结果证明了运动学习在成年啮齿动物 SVZ 中的神经发生影响,并表明运动学习可能会驱动未成熟神经元迁移到纹状体。
Youngwon Kim、Haeyoon Jang,香港大学,香港,香港;Mengyao Wang,香港;Tessa Strain,香港大学,香港,香港;Stephen J Sharp,剑桥大学临床医学院,剑桥,英国;Qiaoxin Shi,剑桥大学临床医学院,剑桥,英国,香港;Shiu Lun Au Yeung,剑桥大学临床医学院,剑桥,英国,香港,香港;Shan Luo,香港大学,香港,香港;Simon Griffin,剑桥大学,剑桥,英国;Nicholas John Wareham,剑桥大学,剑桥;Soren Brage,剑桥大学临床医学院,剑桥,英国
摘要:星形胶质细胞到神经元的重编程在再生医学中具有广阔的前景。为了了解 microRNA 在此过程中的功能,我们对 NeuroD1 过表达的人类星形胶质细胞进行了 RNA 测序。在这里,我们报告了 NeuroD1 诱导了两种 miRNA(miR-375-3p 和 miR-124-3p)以及许多神经元基因的急剧上调。进一步分析表明,miR-375-3p 靶向神经元 ELAVL 基因 (nELAVLs),这些基因编码一个 RNA 结合蛋白家族,也由 NeuroD1 上调。通过过表达和敲低实验,我们表明操纵 miR-375-3p 水平可以在 NeuroD1 介导的重编程过程中调节 nELAVLs 表达,并且 miR-375-3p 过表达促进细胞存活而不干扰神经元重编程过程。有趣的是,miR-375-3p 耐药性 ELAVL4 的过表达会诱导人类星形胶质细胞死亡,并消除 miR-375-3p 在重编程过程中促进细胞存活的作用。因此,我们提出 miR-375-3p 调节 NeuroD1 介导的神经元重编程过程中上调的 nELAVLs 表达水平,而 miR-375-3p 过表达通过减少细胞死亡来提高 NeuroD1 介导的重编程效率。
摘要:近端周围神经损伤 (PNI) 需要长距离轴突再生才能实现目标神经支配和运动功能恢复。虽然成熟的周围神经元在受伤后可以缓慢再生受损的轴突,但在慢性失神经支配后,它们往往无法在运动终板上形成功能性突触,导致即使立即进行手术修复也无法完全恢复运动功能。在过去的十年中,人们付出了很多努力来了解受伤后成功轴突再生所需的分子机制。许多再生相关基因 (RAG) 已被确定在轴突再生中起着不可或缺的作用。在这些 RAG 中,已知在受损的视网膜神经节细胞 (RGC) 中同时消融 PTEN 和 SOCS3 可在视神经挤压伤后诱导持续和长距离的轴突再生。尽管基于病毒的基因传递系统近年来作为各种神经退行性疾病的潜在治疗选择得到了迅速发展,但沉默 PTEN 和 SOCS3 等肿瘤抑制基因可能会对致瘤性产生不良影响,从而限制了它们在临床实践中的治疗应用。因此,本研究旨在识别在神经系统损伤后能够诱导强劲轴突再生和功能恢复的生物活性小分子。我们首先从公开的微阵列数据集中识别了 PTEN 和 SOCC3 同时删除的 RGC 中的差异表达基因,并使用该基因表达谱特征查询药物相关基因表达谱数据库 LINCS,以对生物活性小分子进行计算机筛选。使用模式匹配算法,选出 4 种具有高连接得分的生物活性小分子,使用轴突切断的背根神经节 (DRG) 神经元的体外培养进行功能验证。其中,有一种小分子被发现能有效促进体外培养的 DRG 神经元的神经突生长,以及 PNI 小鼠模型中的体内轴突再生。用这种小分子治疗的小鼠在坐骨神经挤压伤后感觉和运动功能均得到了早期恢复。这些小鼠的复合肌肉动作电位 (CMAP) 幅度也显著增大
NNSA国防计划的战略伙伴关系计划办公室(NA-10.1)与联邦和非联邦实体建立并维持合作伙伴关系,以帮助维持美国的核威慑和更广泛的国家安全任务。战略合作计划办公室分为三个职能支柱:合作伙伴关系,机构计划和跨裁切支持。我的工作转移了所有三个组织活动。