单元2:建模样式(12个讲座)数据流建模:连续分配,净声明分配,延迟,净延迟。行为建模:程序构建,时机控制,块语句,程序分配,条件性语句,循环陈述,程序连续分配门级建模:简介,内置原始门,多个输入门,多个输入门,三态盖茨,MOS开关,交换机,双向交换机,dote deasters,angit nettions,nette nets
4. Mair Lucy (1972). 社会人类学导论. 新德里: 牛津大学出版社 5. Malinowski Brownislow (). 魔法、科学与宗教. 6. Kroeber AL (1923). 人类学. 纽约: Harcourt, Brace。 7. Roy IndraniBasu (2003). 人类学——人的研究. 新德里: S.Chand& Company Ltd. 8. Scupin Raymond 和 DeCorse Christopher R. (). 人类学: 全球视角。 9. Sharma RN (). 社会与文化人类学. 德里: Surjeet Publications 10. Tylor EB (1871). 原始文化: 神话发展研究,
造血干细胞移植(HCT)已治愈许多癌症恶性肿瘤和单基因疾病。然而,当前的临床局限性包括移植移植物中的少量真实HSC以及对遗传毒性骨髓性调节方案的需求。在弗雷德·哈奇(Fred Hutch)和纪念斯隆·凯特林(Memorial Sloan Kettering)的团队中发现了LH在HSC生物学中的新作用,并在LH存在下证明了原始HSC种群的扩大。此外,这些团队正在开发新型的治疗剂,以将LHR受体靶向特定于HCT之前的非毛囊调理方案,以特异性消融HSC。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)下高度的函数,以及原始建筑形状的压力系数或形状因子,这些可能是通过参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确负载的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的负载低得多的负载。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,已证明单个孤立的附近建筑物会使顺风结构的负载增加一个倍数
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
最近的研究为密码学引入了“量子计算经典通信”(QCCC)(Chung 等人)。有证据表明,单向谜题(OWPuzz)是此设置(Khurana 和 Tomer)的自然中心密码原语。被视为中心的原语应具备若干特征。它应行为良好(在本文中,我们将其视为具有放大、组合器和通用构造);它应由多种其他原语所暗示;并且它应等同于某些类有用的原语。我们提出了组合器、正确性和安全性放大,以及 OWPuzz 的通用构造。我们对安全性放大的证明使用了来自 OWPuzz 的新的、更清晰的 EFI 构造(与 Khurana 和 Tomer 的结果相比),该构造可推广到弱 OWPuzz,是本文中技术含量最高的部分。此前已知 OWPuzz 由其他感兴趣的原语所隐含,包括承诺、对称密钥加密、单向状态生成器(OWSG)以及伪随机状态(PRS)。然而,我们能够通过展示一般 OWPuzz 与受限类 OWPuzz(具有有效验证的原语,我们称之为 EV-OWPuzz)之间的黑盒分离来排除 OWPuzz 与许多这些原语的等价性。然后我们证明 EV-OWPuzz 也由大多数这些原语所隐含,这也将它们与 OWPuzz 区分开来。这种分离还将扩展 PRS 与高度压缩 PRS 区分开来,回答了 Ananth 等人的一个悬而未决的问题。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。
建筑框架上的风荷载通常使用建筑规范规定的简单规则或根据 ASCE 7 等标准中的分析程序进行调整来获得。这种方法(本文中简称为“建筑规范方法”)基于一些普遍适用的概念,包括将迎面而来的风速定义为特定通用暴露条件(“地面粗糙度”)的高度函数,以及原始建筑形状的压力系数或形状因子,这些可能是参考历史风洞测试获得的。“通用”暴露条件的特征是从几个预定类别中选择的均匀地面粗糙度,“原始”建筑形状几乎总是简单的矩形棱柱。对于真实环境中的真实建筑,这两种简化都限制了使用分析程序获得准确载荷的能力。例如,众所周知,位于附近类似或更高高度的建筑物密集区域内的建筑物将免受迎面而来的风的影响,并且可能会承受比规范预测的载荷低得多的载荷。另一方面,附近建筑物的特定布置已知可以通过将加速的风“引导”到狭窄的间隙中来增加负载。此外,由于逆风建筑物尾流中的平均和湍流特性,单个孤立的附近建筑物已证明可以使顺风建筑物的负载增加两倍或更多倍,对于迎面而来的风的某些相对方向。真实建筑物所经历的真实情况可能是所有这些现象在各个方向上的某种组合。