噪声中型量子 (NISQ) 设备使得量子神经网络 (QNN) 的变分量子电路 (VQC) 的实现成为可能。尽管基于 VQC 的 QNN 在许多机器学习任务中取得了成功,但 VQC 的表示和泛化能力仍需要进一步研究,特别是涉及到经典输入的降维时。在这项工作中,我们首先提出了一个端到端量子神经网络,即 TTN-VQC,它由一个基于张量训练网络 (TTN) 的量子张量网络组成,用于降维,还有一个 VQC 用于函数回归。然后,我们针对 TTN-VQC 的表示和泛化能力进行误差性能分析。我们还利用 Polyak-Lojasiewicz (PL) 条件来表征 TTN-VQC 的优化特性。此外,我们对手写数字分类数据集进行了功能回归实验,以证明我们的理论分析。
我们提出了一种称为量子互信息神经估计 (QMINE) 的量子机器学习方法,用于估计冯·诺依曼熵和量子互信息,这是量子信息理论的基本属性。这里提出的 QMINE 基本上利用了量子神经网络 (QNN) 技术,以最小化确定冯·诺依曼熵的损失函数,从而确定量子互信息,由于量子叠加和纠缠,人们认为它比传统神经网络更能处理量子数据集。为了创建精确的损失函数,我们提出了一种量子 Donsker-Varadhan 表示 (QDVR),它是经典 Donsker-Varadhan 表示的量子类似物。通过利用参数化量子电路上的参数移位规则,我们可以有效地实现和优化 QNN,并使用 QMINE 技术估计量子熵。此外,数值观测支持我们对 QDVR 的预测,并证明了 QMINE 的良好性能。
最近对量子网络(QNN)以及它们在不同领域的应用都有很大的兴趣。QNNS的当前解决方案对它们的可伸缩性提出了显着的挑剔,从而确保了量子力学的后期满足,并且可以在物理上实现净作品。QNNS的指数状态空间对训练过程的可扩展性构成了挑战。禁止原理禁止制作多个训练样本的副本,并且测量值假设导致了非确定性损失函数。因此,尚不清楚依赖于每个样本的几个副本进行训练QNN的几个副本的现有方法的物理可靠性和效率尚不清楚。本文提出了一个QNN的新模型,依赖于量子量度感知器(QPS)传递功能的带限制的傅立叶范围来设计可扩展的训练程序。通过随机量子随机差下降技术增强了这种训练过程,从而消除了对样品复制的需求。我们表明,即使在由于量子测量引起的非确定性的情况下,这种训练过程即使在存在非确定性的情况下也会收敛到真正的最小值。我们的解决方案具有许多重要的好处:(i)使用具有集中傅立叶功率谱的QPS,我们表明可以使QNN的训练程序可扩展; (ii)它消除了重新采样的需求,从而与无禁止的规则保持一致; (iii)增强了整体培训过程的数据效率,因为每个数据样本都是每个时期的一次。我们为我们的模型和方法的可伸缩性,准确性和数据效率提供了详细的理论基础。我们还通过一系列数值实验来验证方法的实用性。
背景 膝关节骨关节炎的临床问题是,尽管一些新疗法安全有效,但反应各不相同,定义预测个体反应的特征仍然是一个挑战。基于参数化量子电路 (PQC) 的变分量子经典和量子机器学习 (QML) 算法是一种很有前途的实验技术,可以提高基于存储在大型非结构化数据库中的真实数据的精准医疗临床决策支持系统 (CDSS) 的效率。在本文中,我们测试了一个量子神经网络 (QNN) 应用程序,以支持精准数据驱动的临床决策,为晚期膝关节骨关节炎选择个性化治疗。方法在征得患者同意并经研究伦理委员会批准后,我们收集了 170 名符合膝关节置换术条件的患者(Kellgren-Lawrence 分级 ≥ 3、OKS 27、年龄 ≥ 64 和特发性关节炎病因)在 2 年内接受单次微碎片脂肪注射治疗前后的临床人口统计数据。为减轻性别偏见,性别类别保持平衡(76 名男性,94 名女性)。OKS 改善 ≥ 7 的患者被视为有反应者。我们在随机选择的 113 名患者训练子集上训练了 QNN 分类器,以在 1 年时根据疼痛和功能对反应者与无反应者(73 R,40 NR)进行分类。异常值从训练数据集中隐藏,但从验证集中保留。我们在 IBM 量子模拟器上运行了 QNN 分类器,以减少由于噪声造成的错误。结果 我们在随机选择的 57 名患者(34 名 R,23 名 NR)测试子集(包括异常值)上测试了我们的 QNN 分类器。无信息率为 0.59。我们的应用程序正确地将 34 名反应者中的 28 名和 23 名无反应者中的 6 名分类为正确(敏感性 = 0.82,特异性 = 0.26,F1 统计量 = 0.71)。阳性(LR+)和阴性(LR-)似然比分别为 1.11 和 0.68。诊断优势比 (DOR) 等于 2。结论 在相对较小的膝关节骨关节炎数据集上测试的 QNN 分类器的初步临床和技术结果表明,量子机器学习应用于数据驱动的临床决策是一项很有前途的技术。我们的研究结果需要通过更大的真实世界非结构化数据集进行进一步的研究验证,并通过人工智能临床试验进行临床验证,以测试模型的功效、安全性、临床意义和在公共卫生层面的相关性。
量子计算机能否用于实现比传统方法更好的机器学习模型?这些方法是否适合当今嘈杂的量子硬件?在本文中,我们制作了一个 Python 框架,用于实现基于在量子硬件上评估的参数化量子电路的机器学习模型。该框架能够实现量子神经网络 (QNN) 和量子电路网络 (QCN),并使用基于梯度的方法对其进行训练。为了计算量子电路网络的梯度,我们开发了一种基于参数移位规则的反向传播算法,该算法同时利用了经典硬件和量子硬件。我们进行了一项数值研究,试图描述密集神经网络 (DNN)、QNN 和 QCN 如何作为模型架构的函数运行。我们专注于研究消失梯度现象,并分别使用经验费舍尔信息矩阵 (EFIM) 和轨迹长度量化模型的可训练性和表达性。我们还通过在人工数据以及真实世界数据集上训练模型来测试模型的性能。
量子机器学习 (QML) 是将经典机器学习 (ML) 推广到量子领域的一种方式,近年来,这种学习方式迎来了复兴,并催生出一系列令人眼花缭乱的公式和应用(详情请参见 [1-3] 及其参考文献)。广义上讲,量子机器学习有以下分类 [4]:(i) 经典机器学习的量子加速 [5-8],(ii) 经典机器学习表征量子系统 [9-11],或 (iii) 量子设备学习量子数据(完整 QML)[12-22]。我们这里重点关注最后一类,因为在这种情况下,量子加速不仅是最有可能的,而且由于前面提到的层析成像难度呈指数级增长,因此也是最迫切需要的 [23]。人们考虑了多种用于 QML 的量子架构,从变分量子电路 [ 19 , 24 ] 到人工神经网络的量子类似物 [ 15 , 17 , 18 , 20 , 21 , 25 ]。我们认为 [ 21 ] 中引入的量子神经网络 (QNN) 架构为完整的 QML 提供了最有前途的平台。例如,此类 QNN 最近被用作量子自动编码器,以对纠缠量子态进行去噪 [ 26 ]。此外,当量子神经元足够局部且稀疏时 [ 27 ],这些 QNN 似乎提供了一种架构,可能被用来避免“荒芜高原”问题 [ 28 ]。最后,这些 QNN 被发现达到了量子学习的基本信息论极限 [ 12 , 16 , 29 – 31 ],这是由量子无免费午餐定理 [ 32 – 34 ] 规定的,这是对通用非结构化量子数据源的量子学习性能的限制。量子数据源永远不会是通用和非结构化的,因为生成它们的设备总是有结构的。事实上,因果和空间顺序体现在附近局部产生的状态之间的相关性中
曾经假定需要完全精确的计算以获得深入NNS(DNN)的准确结果。最近,研究人员确定了这些模型的较低精度,量化甚至三元或二进制变体可以使用计算资源的一部分来达到适当的精度水平。这些量化的NN(QNN)现在可以使用较低的功率,最小资源,嵌入式芯片(SOC)和FPGA进行实施。sec。3捕获了核心的学习,差距和机会,从QNN文献中进行了进一步的创新。使用卷积NNS(CNN)实施的模式识别算法非常适合太空探索和无人驾驶飞机,并且可以使用这些应用程序使用来基于捕获的图像来识别和分类对象[2]。由于其低成本,低功率消耗和灵活性,FPGA提供了有效实施NNS
生成模型一直是机器学习研究中特别受关注的一个领域,成功的模型架构极大地改进了生成模型,包括变分自编码器 (VAE)、生成对抗网络 (GAN) 和可逆神经网络 (INN) [1-3]。除其他应用外,生成模型在事件生成中的应用也得到了广泛研究 [4-6]。与马尔可夫链蒙特卡洛 (MCMC) 技术 [7-11] 相比,生成模型的优势不仅限于提高推理速度,而后者迄今为止已成为领先的 LHC 模拟和解释方法。此外,生成模型可以进行端到端训练,从而实现更全面的应用,如展开 [12-14]、异常检测 [15-19] 等等 [20]。然而,这些神经网络 (NN) 的参数空间巨大,使其能够模拟复杂的交互,但这也导致对计算资源的需求巨大。流行的 NN 架构的规模早已达到计算可行性的边界。量子机器学习 (QML) 将量子计算的强大功能引入现有的机器学习基础,以建立并利用量子优势,从而实现量子算法独有的性能提升。虽然基于门的量子计算与经典计算有很大不同,但已经构建了许多与上述经典生成网络等效的模型,包括量子自动编码器 [ 21 ] 和量子 GAN [ 22 – 27 ]。值得注意的例外是 INN [ 28 , 29 ],它们尚未转移到 QML 领域。此类网络将成为量子神经网络 (QNN) 阵列的理想补充。虽然经典 INN 中雅可比行列式的可处理性使它们能够执行密度估计,这从本质上防止了模式崩溃,但通常无法有效地计算完整的雅可比矩阵 [ 30 ]。 INN 中完全可处理的雅可比矩阵(QNN 可用)将允许高效学习主要数据流形 [31-34],为可解释的表示学习和对底层过程的新洞察开辟机会。基于耦合的 INN 架构已通过经验证明对消失梯度问题更具弹性 [28],这使它们可以直接受益于具有许多参数的深度架构。然而,到目前为止列出的许多 INN 应用已经需要大量的训练资源。目前的研究表明,量子模型可以避免这种对巨大参数空间的需求。它们在表达力方面胜过常规 NN,能够用少得多的参数表示相同的变换 [35-39]。这一理论基础得到了几个专门构建的 QML 电路实例的支持,这些电路为专门设计的问题提供了比经典解决方案更有效的解决方案 [ 40 – 43 ]。QNN 已经成功应用于相对有限的高能物理问题 [ 21 , 25 , 44 – 46 , 46 – 51 ] 以及非 QML 方法 [ 52 – 56 ]。然而,据我们所知,尚未尝试构建可逆 QNN,该 QNN 可通过其可逆性用作生成任务的密度估计器。通过这项工作,我们旨在填补与经典 INN 量子等价的剩余空白,开发量子可逆神经网络 (QINN)。我们展示了如何将 QNN 流程中的每个步骤设计为可逆的,并展示了模拟网络估计分布密度的能力。作为原理证明,我们将我们的模型应用于最重要、研究最多的高能物理过程之一的复杂模拟 LHC 数据,pp → Z j → ℓ + ℓ − j,
摘要 — 低位宽量化神经网络 (QNN) 通过减少内存占用,支持在受限设备(如微控制器 (MCU))上部署复杂的机器学习模型。细粒度非对称量化(即,在张量基础上为权重和激活分配不同的位宽)是一种特别有趣的方案,可以在严格的内存约束下最大限度地提高准确性 [1]。然而,SoA 微处理器缺乏对子字节指令集架构 (ISA) 的支持,这使得很难在嵌入式 MCU 中充分利用这种极端量化范式。对子字节和非对称 QNN 的支持需要许多精度格式和大量的操作码空间。在这项工作中,我们使用基于状态的 SIMD 指令来解决这个问题:不是显式编码精度,而是在核心状态寄存器中动态设置每个操作数的精度。我们提出了一种基于开源 RI5CY 核心的新型 RISC-V ISA 核心 MPIC(混合精度推理核心)。我们的方法能够完全支持混合精度 QNN 推理,具有 292 种不同的操作数组合,精度为 16 位、8 位、4 位和 2 位,而无需添加任何额外的操作码或增加解码阶段的复杂性。我们的结果表明,与 RI5CY 上的基于软件的混合精度相比,MPIC 将性能和能效提高了 1.1-4.9 倍;与市售的 Cortex-M4 和 M7 微控制器相比,它的性能提高了 3.6-11.7 倍,效率提高了 41-155 倍。索引术语 —PULP 平台、嵌入式系统、深度神经网络、混合精度、微控制器
是否可以将量子计算机用于实现比传统方法更好的机器学习模型,并且此类方法适合当今的嘈杂量子硬件吗?在本论文中,我们制作了一个Python框架,用于基于在量子硬件上评估的参数化量子电路来实施机器学习模型。该框架能够实现量子神经网络(QNN)和量子电路网络(QCN),并使用基于梯度的方法训练它们。为了计算量子电路网络的梯度,我们基于利用经典和量子硬件的参数移动规则开发了一种反向传播算法。我们进行了一项数值研究,我们试图表征密集神经网络(DNNS),QNN和QCN的表现如何作为模型架构的函数。我们专注于研究消失的梯度现象,并分别使用经验纤维信息矩阵(EFIM)和轨迹长度来量化模型的训练性和表达性。我们还通过对人工数据以及现实世界数据集训练模型来测试模型的性能。