由于嘈杂的中间量子量子(NISQ)时代已经存在,因此量子神经网络(QNN)绝对是对许多经典神经网络无法解决的许多问题的承诺解决方案。此外,量子卷积神经网络(QCNN)现在正在受到很多关注,因为它可以处理与QNN相比的高维输入。但是,由于量子计算的性质,很难扩大QCNN以提取由于贫瘠的高原而提取足够数量的特征。这在具有高维数据输入的分类操作中尤其具有挑战性。但是,由于量子计算的性质,很难扩大QCNN以提取由于贫瘠的高原而提取足够数量的特征。这尤其是具有高维数据输入的分类操作中的挑战。为此,提出了一种新颖的3D可伸缩QCNN(SQCNN-3D),以用于分类应用中的点云数据处理。此外,在SQCNN-3D顶部还考虑了反向保真度训练(RF-Train),用于使用量子计算的保真度有限的Qubits多样化特征。我们的数据密集型性能评估验证了所提出的算法是否达到了所需的性能。
摘要背景:在医学诊断和临床实践中,早期诊断疾病对于准确治疗至关重要,减轻了对医疗保健系统的压力。在医学成像研究中,图像处理技术对于高准确性分析和解决疾病往往至关重要。本文通过模拟技术建立了一种新的图像分类和分割方法,该技术是对印度共同19岁患者的图像进行的,并在医学实践中引入了量子机学习(QML)的使用。方法:本研究建立了用于对Covid-19进行分类的原型模型,将其与计算机断层扫描(CT)图像中的非旋转肺炎信号进行了比较。模拟工作评估了量子机学习算法的使用,同时评估了图像分类问题的深度学习模型的功效,从而确定了在处理具有较高偏见的复杂临床图像数据时,需要提高预测率所需的性能质量。结果:研究考虑了一种新型算法实现,利用了量子神经网络(QNN)。所提出的模型的表现优于特定分类任务的常规深度学习模型。由于量子模拟的效率和更快的收敛性属性解决了用于网络培训的优化问题,因此是显而易见的。 在量子优化硬件上观察到的模型运行时间为52分钟,而在K80 GPU硬件上,对于类似的样本量,为1 h 30分钟。是显而易见的。在量子优化硬件上观察到的模型运行时间为52分钟,而在K80 GPU硬件上,对于类似的样本量,为1 h 30分钟。模拟表明,QNN的表现优于DNN,CNN,2D CNN的准确度量度超过2.92%,平均召回率约为97.7%。
那么如何构建和训练量子网络,使其执行任务时性能更佳呢?群体智慧或许能为这一热门答案做出贡献。群体智慧是指不同群体的集体结果或决策优于单个专家的决策 [1]。这一现象已在许多领域得到充分研究,尤其是社会科学 [2-8],并且可应用于经济预测 [9]、公共政策决策 [10]、医学诊断 [11] 和科学建议 [12]。一个简单的例子,类似于参考文献 [1],就是测量一棵树的高度。在这种情况下,群体智慧意味着群体中经验较少的个人的平均估计往往比专家的测量结果更好。类似范式还有集成学习,强调不同学习算法的组合比单独使用其中一种效果更好 [13-15]。这激发了人们对量子机器学习中这一现象的探索。人工神经网络的进步已在量子领域得到应用,并有可能展现出优于经典模拟的潜力 [16]。当前者将量子系统作为节点时,它们通常被称为量子神经网络 (QNN)。最近,已经提出了 QNN 提案 [17-22],其网络架构、
过去几十年,深度学习和量子计算领域取得了重大突破。这两个领域的交叉研究引起了越来越多的关注,这导致了量子深度学习和量子启发式深度学习技术的发展。在本文中,我们通过讨论该领域各种研究工作的技术贡献、优势和相似之处,概述了量子计算和深度学习交叉领域的进展。为此,我们回顾并总结了为建模量子神经网络 (QNN) 和其他变体(如量子卷积网络 (QCNN))而提出的不同方案。我们还简要介绍了量子启发式经典深度学习算法的最新进展及其在自然语言处理中的应用。
量子信息处理旨在利用量子物理现象进行数据处理。该领域始于 20 世纪 80 年代初 [ 1 , 2 ],最近在构建可控量子力学系统方面取得的突破引发了该领域的爆炸式增长。构建量子计算机是一项艰巨的挑战,但设计算法同样艰巨,这些算法在量子计算机上运行后,能够利用专家们普遍认为量子计算在某些计算任务上优于传统计算的优势。一项特别引人注目的努力是利用近期的量子计算机,但它的缺点是尺寸有限,并且存在令人衰弱的量子噪声。过去几年,噪声中型量子 (NISQ) 计算机的算法设计领域一直在努力确定计算领域、采用量子信息处理的范例和商业用例,以便从构建可编程量子力学设备的最新进展中获益——尽管目前这些进展可能还很有限 [ 3 ]。人工智能 [ 3 , 4 ] 是近期可能实现量子优势的用例领域。这种希望最有可能出现在生成任务中:理论上已经证明,几种概率分布族允许量子算法从中有效地采样,而没有经典算法能够或已知能够执行该采样任务。玻色子采样可能是这些采样任务中最广为人知的,即使在有噪声的情况下这种优势似乎不会持续(参见 [ 5 ]);在参考文献 [ 6 , 7 ] 中可以找到一些其他采样程序的示例。在可以通过操纵一个或多个参数来迭代改变的量子电路方面也取得了有希望的进展:Du 等人 [ 8 ] 考虑了所谓的参数化量子电路 (PQC),发现它们也在生成任务中产生了理论优势。当强调非线性方面时,PQC 偶尔被称为量子神经网络 (QNN)(例如在 [ 9 ] 中),或称为变分量子电路 [ 10 ]。在本文中,我们坚持使用术语 PQC,但不考虑排除 QNN 或 VQC。
本文仅关注应用量子机器学习方法提高基于多特征土壤和气候数据的作物产量预测准确性的可能性。主要目标是提高作物产量预测模型的效率,这对于提高一个国家的产量和粮食比例至关重要。复杂性也抛弃了监督分析方法,随着农业产业的扩大,非线性也随之增长。这些领域现在涵盖了更广泛的相互关联的元素,包括土壤类型和养分含量、它们与土壤水分含量的关系、气温、降雨量和其他因素。在这项研究中,我们使用量子计算来解决处理高阶数据的问题,比传统计算机中提出的相同问题更熟练。在本文中,我们开发了 QSVM 和 QNN 并将其整合到传统的机器学习模型中,以从包含多年土壤和天气区域和时间信息的大型高度复杂的数据集中学习。我们相信这些模型可以揭示 QSVM 和 QNN 更适合检测的模式,因为它们具有可扩展性和在大型数据集上计算的能力。因此,量子增强模型在预测能力方面优于传统方法,显示出优异的 MSE 值和稳健性值。具体而言,由于变量之间存在高度非线性关系,量子技术的集成增强了泛化能力。这些结果表明,QML 可以显著改善作物产量估计,因为它的预测更准确,可直接应用于农业实践和政策。这项研究将扩大关于量子计算在农业中应用的文献,因为它是一个新兴领域,有可能解决粮食生产中的各种挑战。在作物产量预测领域,我们正在为更不易受到影响的农业结构奠定基础,这些结构能够满足未来的气候条件和不断增长的全球粮食需求。因此,这项研究呼吁对农业中其他基本用例中潜在的基于量子的解决方案进行更多研究。
图上的组合优化 (CO) 是一个关键但具有挑战性的研究课题。最近的量子算法为解决 CO 问题提供了新的视角,并有可能展示出量子优势。量子近似优化算法 (QAOA) 是一种众所周知的由参数量子电路构建的 CO 量子启发式算法。然而,QAOA 最初是为无约束问题设计的,电路参数和解是通过耗时的迭代联合求解的。在本文中,我们提出了一种新颖的量子神经网络 (QNN),用于以监督的方式学习 CO 问题,以获得更好、更快的结果。我们专注于具有匹配约束和节点置换不变性的二次分配问题 (QAP)。为此,设计了一种称为 QAP-QNN 的量子神经网络来将 QAP 转换为受约束的顶点分类任务。此外,我们在 TorchQauntum 模拟器上研究了两个 QAP 任务:图匹配和旅行商问题,并通过实证证明了我们方法的有效性。
摘要 - Quantum机器学习(QML)不断发展,为各种应用程序释放了新的机会。在这项研究中,我们通过采用各种特征映射技术来研究和评估QML模型对基因组序列数据二元分类的适用性。我们提出了一个开源的,独立的基于qiskit的实现,以在基准基因组数据集上进行实验。我们的模拟表明,特征映射技术和QML算法之间的相互作用显着影响性能。值得注意的是,PEGASOS量子支持矢量分类器(PEGASOS-QSVC)表现出较高的灵敏度,尤其是在召回指标方面出色,而量子神经网络(QNN)在所有特征图中都具有最高的训练精度。但是,分类器性能的可变性(取决于功能映射)突出了在某些情况下过度适应本地化输出分布的风险。这项工作强调了QML对基因组数据分类的变革潜力,同时强调需要继续进步以增强这些方法的鲁棒性和准确性。
变分量子算法 (VQA),如量子近似优化算法 (QAOA)、变分量子特征值求解器 (VQE)、量子神经网络 (QNN) 和量子编译 (QC),有望在传统计算机以外的嘈杂中型量子 (NISQ) 设备上解决实际任务 1 。最近的成果证明了其在量子态制备 2 – 6 、量子动态模拟 2 、 7 – 9 和量子计量 10 – 14 方面的有效性。尤其是 QC,引起了人们的极大兴趣。它使用训练过程将信息从未知目标单元转换为可训练的已知单元 15 、 16 。该方法有多种应用,包括门优化 15 、量子辅助编译 16 、连续变量量子学习 17 、量子态层析成像 18 和量子对象模拟 2 。例如,可以准备量子对象(例如量子态),并使用 QC 2 在量子电路中模拟其演化。QC 的性能取决于量子比特的数量和电路深度。可训练量子电路的选择也至关重要,必须仔细选择。一些纠缠