量子信息处理旨在利用量子物理现象进行数据处理。该领域始于 20 世纪 80 年代初 [ 1 , 2 ],最近在构建可控量子力学系统方面取得的突破引发了该领域的爆炸式增长。构建量子计算机是一项艰巨的挑战,但设计算法同样艰巨,这些算法在量子计算机上运行后,能够利用专家们普遍认为量子计算在某些计算任务上优于传统计算的优势。一项特别引人注目的努力是利用近期的量子计算机,但它的缺点是尺寸有限,并且存在令人衰弱的量子噪声。过去几年,噪声中型量子 (NISQ) 计算机的算法设计领域一直在努力确定计算领域、采用量子信息处理的范例和商业用例,以便从构建可编程量子力学设备的最新进展中获益——尽管目前这些进展可能还很有限 [ 3 ]。人工智能 [ 3 , 4 ] 是近期可能实现量子优势的用例领域。这种希望最有可能出现在生成任务中:理论上已经证明,几种概率分布族允许量子算法从中有效地采样,而没有经典算法能够或已知能够执行该采样任务。玻色子采样可能是这些采样任务中最广为人知的,即使在有噪声的情况下这种优势似乎不会持续(参见 [ 5 ]);在参考文献 [ 6 , 7 ] 中可以找到一些其他采样程序的示例。在可以通过操纵一个或多个参数来迭代改变的量子电路方面也取得了有希望的进展:Du 等人 [ 8 ] 考虑了所谓的参数化量子电路 (PQC),发现它们也在生成任务中产生了理论优势。当强调非线性方面时,PQC 偶尔被称为量子神经网络 (QNN)(例如在 [ 9 ] 中),或称为变分量子电路 [ 10 ]。在本文中,我们坚持使用术语 PQC,但不考虑排除 QNN 或 VQC。
主要关键词