摘要与导致孟德尔疾病的单基因突变不同,常见的人类疾病可能是由多层,多尺度和高度相互联系的相互作用引起的新现象。心房和心室间隔缺陷是人类心脏先天性异常的最常见形式。心房间隔缺陷(ASD)在产后左右心房之间显示出开放的通信,如果未经治疗,可能会导致严重的血液动力学后果。一种较温和的形式的房屋卵形孔(PFO)的较轻形式存在于大约四分之一的人口中,与缺血性中风和偏头痛密切相关。心房缺陷的解剖学负债以及遗传和分子基础尚不清楚。在这里,我们通过定量性状基因座(QTL)映射进行了对心房间隔变化的先前分析,该映射是在近近近近近近QSI5和129T2/SVEMS小鼠菌株之间建立的高级间交叉线(AIL),这些分类显示了近交易的小鼠菌株。分析解析了37个独特的QTL,具有QTL之间的高重叠,用于不同的间隔特征,而PFO作为二元性状。对父母菌株和过滤鉴定的预测功能变异的整个基因组测序,包括已知的人类先天性心脏病基因。对开发隔sa的转录组分析显示,涉及核糖体,核小体,线粒体和细胞外基质生物合成的网络下调,在129T2/SVEMS菌株中的细胞外基质生物合成,潜在地反映了隔层发育中生长和细胞成熟的重要作用。分析包括增强子和启动子在内的不同基因特征的变体结构分析提供了参与非编码以及蛋白质编码变体的证据。我们的研究提供了与人ASD和PFO相关的常见先天性心脏病的遗传复杂性和网络责任的第一张高分辨率图。
摘要:干旱是对全球玉米产量的严重负面影响的主要非生物压力之一。了解玉米中干旱耐受性的遗传结构是朝着繁殖耐旱的品种和针对性的遗传资源剥削的关键步骤。在这项研究中,与谷物产量成分,开花时间和植物形态有关的511定量性状基因座(QTL)在干旱条件下以及干旱耐受性指数是从27项发表的研究中收集的,然后预测在IBM2 2008年的IBM2 2008年邻居参考图中的荟萃分析。总共确定了与玉米干旱耐受性相关的83个元QTL(MQTL),其中20个确定为核心MQTL。与先前发布的QTL相比,MQTL的平均置信区间大大降低。通过来自基因组关联研究的共定位标记 - 特性关联证实了几乎一半的MQTL。基于与干旱耐受性有关的水稻蛋白的比对,在玉米MQTL附近发现了63个直系同源基因。此外,在20个核心MQTL区域和玉米与同源基因中发现了583个候选基因。基于候选基因的KEGG分析,发现植物激素信号通路显着富集。信号通路可以对干旱耐受性产生直接或间接影响,并与其他途径相互作用。总而言之,这项研究提供了对玉米干旱耐受性的遗传和分子机制的新见解,以对繁殖中这种重要特征的更具针对性的改善。
等级标准非常高铅golof变体;或与2个数据集中的靶基因的molqtl共定位(H4 pp> 80%);调节元件的最大ABC得分与铅变体高铅编码变体重叠;或相关(P <1x10 -6)Golof变体;或与> 2个数据集中的靶基因的molqtl共定位(H4 pp> 80%)或与蛋白质QTL显着的MR(Q值<0.05);与靶基因的MOLQTL(H4 pp> 80%)或具有范围全基因组蛋白质QTL(Q -Value <0.05)的MOLQTL重叠的调节元件(p <1x10 -6)相关变体的最高ABC评分中等共定位,或与元素重叠的ABC分数(Q -Value <0.05)或较大的ABC分数(P <1靶基因(H4 pp> 30%)或最接近铅变体或最大ABC分数的元素重叠相关变体(p <1x10 -6)或ABC链接(任何分数)或元素之间的元素之间的元素和目标基因与eqTL或ABC链接之间非常弱的铅基因与eqtl或abc链路之间重叠的元素重叠的元素重叠和目标变量
许多作者考虑了用于分析来自杂种种群数据的设计(例如Neimann-Sprensen和Robertson,1961年; Soller和Genizi,1978年; Geldermann等,1985; Weller等,1990)。这些方法的缺点是他们一次使用来自单个MARIRW的信息。没有标记将具有统一性的杂合性,因此对于任何给定的标记,有些父亲都会是纯合的,因此是非信息的。这会浪费信息,并在QTL的估计位置中引入偏差可能会有更大的问题。此外,提出的最小二乘方法不能单独估计任何检测到的QTL的位置和效果。最大似然(ML)方法(Weller,1986; Knott and Haley,1992a)可以估计这两种效果,但是通常仅使用单个标记(Weller,1986; Knott; Knott and Haley,1992a and B)估计,位置与标记相对(I.E.可以是它的任何一侧)。
基因发现经济上重要的特征在作物基因组学和育种方面仍然是充满挑战的边界。DNA测序技术和遗传分析方法的最新进展为发现许多基因和热点基因组区域铺平了道路。对新型基因组区域或候选基因的检测对于植物繁殖者和遗传学家来说非常有用,可以改善农作物,剖析复杂性状的遗传学,并了解感兴趣的特征基因的生物学机制。定量性状基因座(QTL)映射和基因组广泛的关联研究(GWAS)主导了最近的作物基因发现研究。这些研究正在成为常规活动,以发现重要表型的遗传基础,并导致潜在的等位基因变化,标记性状属性关联以及有利等位基因在目标种质中的频率,以帮助理解作物功能基因组学(Rasheed和Xia 2019)。但是,发现的基因座需要在考虑到繁殖之前需要进一步验证。在大多数GWAS情况下,由于将人口结构与低频因果等位基因混淆的问题可能是模棱两可的,这导致了错误的阴性结果和其他未指定的因素,包括在某些基因座上调用低临床基因型的呼唤(Browning和Yu,Yu,2009)和人口大小(Finnoet al。因此,使用交叉群体的方法进行进一步的验证,其中候选基因座在双生养生中被验证或独立的种质收集(Finnoet al。,2014)。遗传验证(QTL,基因组区域,候选基因,基因表达,标记发育等)是标记辅助和基因组选择的基本步骤之一,以实现其目标。遗传验证检查何时在其他位置或年份生长该材料时,相同的QTL或基因是否往往被显着检测到,以及在不同遗传背景中测试时是否仍然可以显着检测其效果(Sallam等人,2016年)。此外,在不同种群中的多态性DNA标记的验证对于进一步的遗传
本演示文稿中提到的“Qualcomm”可能指 Qualcomm Incorporated、Qualcomm Technologies, Inc. 和/或 Qualcomm 公司架构内的其他子公司或业务部门(如适用)。Qualcomm Incorporated 包括我们的许可业务 QTL 和我们绝大多数的专利组合。Qualcomm Technologies, Inc. 是 Qualcomm Incorporated 的子公司,与其子公司一起运营我们几乎所有的工程、研发职能以及我们几乎所有的产品和服务业务,包括我们的 QCT 半导体业务。
摘要。源自的简单序列重复标记(EST-SSR)是研究遗传多样性,系统发育,进化,比较基因组学,QTL分析和基于基因关联的重要工具。我们已经搜索了用于苏格兰松树的已知EST-SSR(Pinus sylvestris l。)- 世界上主要的森林物种之一。然后,在102个EST-SSR中,有91个建议用于苏格兰松树研究,并与Pinus taeda L.的参考基因组以及Sylvestris的可用基因进行了对齐。通过保守域分析(CDD),基因本体学注释的已知同源物的功能分析以及KEGG途径分析,通过保守的域分析(CDD),基因组位置和相关基因的共识功能进行了共识。许多标记都位于未翻译的区域(主要是3'UTR),以及苏格兰和斑驳的松树基因的编码序列。对于八个标记,其序列已知的序列在任何一个物种中都无法识别基因。这些标记中的七个位于当前基因组组件中没有基因的塔达疟原虫支架区域(v.1.0)。将来可以使用结果来改善人群遗传研究的标记,自适应特征的研究和sylvestris的QTL映射以及其他松树物种。关键词:EST-SSR,Pinus Sylvestris,Marker-Gene关联,标记基因组位置,功能注释。
摘要:水稻植物的高度是一种与生物量,住宿耐受性和产量密切相关的农业特征。识别与植物高度调节和制定筛查潜在候选基因的策略有关的定量性状基因座(QTL)区域可以改善水稻的农业特征。在这项研究中,使用了跨越“ Cheongcheong”和“ Nagdong”个体的双单倍体种群(CNDH),并使用了222个单序重复标记构建遗传图。在RM3482-RM212区域中,染色体1,QPH1,QPH1-1,QPH1-3,QPH1-5和QPH1-6的区域连续五年识别。表型方差解释的范围为9.3%至13.1%,LOD评分在3.6至17.6之间。Osphq1是一种与植物高度调节有关的候选基因,在RM3482-RM212中进行了筛选。Osphq1是吉布雷素20氧化酶2的直系同源物,其单倍型以9个SNP区分。根据其高度将植物分为两组,并根据Osphq1的表达水平区分高植物并聚集。QTL和候选基因,因此,筛选了生物量调节,但是调节的分子机制仍然鲜为人知。本研究获得的信息将有助于开发通过水稻植物高度控制的标记辅助选择和繁殖的分子标记。
种子大小/体重在确定作物产量中起着重要作用,但在大豆中只有控制种子大小的基因很少。在这里,我们在17号染色体上,进行了全基因组关联研究,并确定了一个名为GMSW17(种子宽度17)的主要定量性状基因座(QTL)(QTL)(种子宽度17),该染色体确定自然人群中大豆种子宽度/重量。gmsw17编码属于UBP22的泛素特异性蛋白酶,属于泛素特异性蛋白酶(USPS/UBPS)家族。进一步的功能研究表明,GMSW17与GMSGF11和GMENY2相互作用,形成了去泛素酶(DUB)模块,该模块会影响H2BUB水平并负面调节GMDP-E2F-1的表达,从而抑制G1至S-S-S-S-S-S-S Transi-Transi-Transi-Try-Tion。人口分析表明,GMSW17在大豆驯化过程中经历了人工选择,但在现代繁殖中尚未固定。总而言之,我们的研究确定了与大豆种子重量相关的主要基因,从而为大豆提供了高收益育种的潜在优势。