«鉴定候选基因的定量抗性,是由真菌外交斑rosae»irhs Angers引起的 - “装饰植物的遗传学和多样性”的目的:表征耐药性玫瑰基因型,广泛用于繁殖级别,从表型级别到繁殖水平,从而更好地相互作用,并获得了工厂的互动,并获得了植物互动的理解。RNASEQ数据分析(FastP,FastP,Salmon,R packages deseq2,DegReport),KASP标记的设计,QTL分析(JoinMap,r/QTL),显微镜
谷物的重量和晶粒数是小麦中重要的产量成分特征,而基础遗传基因座的识别有助于提高产量。在这里,我们确定了八个稳定的定量性状基因座(QTL)的产量成分性状,包括千粒重量(TGW)的五个基因座(TGW)和3个晶粒数(GNS)中的晶粒数(GNS),在四个环境中衍生出来自交叉Yangxiaomai/Zhongyou 9507的重组近交系数。由于晶粒尺寸是晶粒重量的主要决定因素,因此我们还将QTL绘制为晶粒长度(GL)和晶粒宽度(GW)。QTGW.CAAS-2D,QTGW.CAAS-3B,QTGW.CAAS-5A和QTGW.CAAS-7A.2用于与晶粒尺寸的tgw合作。QTGW.CAAS-2D在QGNS.CAAS-2D中也具有一致的遗传位置,这表明多效基因座是TGW和GNS之间权衡效应的调节剂。测序和链接映射表明TAGL3-5A和WAPO-A1分别是QTGW.CAAS-5A和QTGW.CAAS-7A.2的候选基因。我们开发了与稳定的QTL相关的特异性PCR(KASP)标记,用于产量成分性状,并在黄河河谷地区的多种小麦品种中验证了它们的遗传作用。基于KASP的基因分型分析进一步表明,所有稳定的QTL的上等位基因tgw而不是GNS都需要进行阳性选择,这表明该区域的产量在很大程度上取决于TGW的增加。对先前研究的比较分析表明,大多数QTL可以在不同的遗传背景中检测到,而QTGW.CAAS-7A.1可能是新的QTL。2022年中国作物科学学会和CAAS作物科学研究所。2022年中国作物科学学会和CAAS作物科学研究所。这些发现不仅提供了有价值的遗传信息,以提高产量,而且还提供了用于标记辅助选择的有用工具。代表Keai Communications Co.,Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
POD破碎是农业相关性的一种特征,可确保植物在其本地环境中取代种子,并在几种宽阔的农作物中受到了驯化和选择的驯化和选择。然而,豆荚破碎会导致菜籽(甘蓝纳普斯L.)作物的显着屈服降低。衍生自B. rapa/b的种间繁殖线BC95042。Napus Cross表现出改善的POD破碎阻力(比易碎的B. Napus品种高达12倍)。为了揭示新品种中的遗传基础并改善了POD破碎的耐药性,我们分析了F 2和F 2:3衍生的种群,来自BC95042和Advanced Breeding系列的交叉,BC95041,并用15,498 Dartseq标记的基因分型。通过基因组扫描,间隔和包容性的复合间隔映射分析,我们确定了与POD破裂能量相关的七个定量性状基因座(QTL),用于POD破碎的抗性或POD强度的度量,并且它们位于A02,A02,A03,A03,A05,A09,A09,A09和C01 Chromosomes上。两种亲本线都为豆荚碎片抗性贡献了等位基因。我们确定了添加剂X添加剂,添加性优势和优势X优势X在A01/C01,A01/C01,A03/A07,A07/C03,A03,A03/C03和C01/C02染色体之间的相互作用之间的五对X添加剂,添加剂优势和优势X优势相互作用。QTL对A03/ A07和A01/ C01的影响处于排斥阶段。比较映射确定了几种候选基因(AG,ABI3,BP1,CEL6,FIL,FIL,FUL,GA2OX2,IND,LATE,LEUNIG,MAGL15,RPL,QRT2,RGA,RGA,SPT,SPT和TCP10),基于QTL和QTL的QTL和上毒QTL相互作用,以实现pod shatter pod shatter shatter shatter shatter shatter shatter shatter shatters。BNAA09G05500D受到在A02,A03和A09上检测到的三个QTL靠近(富有成果的)同源物BNAA03G39820D和BNAAA09G05500D。着眼于FUL,我们研究了推定的图案,序列变体和其同源物的进化速率,373个重新设备的B. napus napus感兴趣。
摘要对瓦罗阿击蛋白的饲养源细胞的摘要是一种特征,最近吸引了对蜜蜂育种的兴趣,以选择耐螨的Apis mellifera菌落。为了研究该性状的遗传结构,我们评估了一个样本。Mellifera Mellifera菌落(n = 155)来自瑞士和法国,并进行了全基因组关联研究,使用每个菌落500名工人进行下一代测序。结果表明,两个QTL显着(p <0.05),与destructor -destructor摄取的育雏细胞的回旋相关。最佳相关的QTL位于以前发现与修饰行为相关的区域的5号染色体上,这是对V. destructor的抗性性状,在a中。Mellifera和Apis Cerana。第二最佳相关的QTL位于DSCAM基因内含子中的4号染色体上,该基因与神经元接线有关。先前的研究表明,与神经元接线有关的基因与回顾和Varroa敏感卫生有关。因此,我们的研究证实了基因区域对5染色体在社会免疫中的作用,并同时提供了对蜂蜜蜜蜂常见螨抗性性状之间遗传相互作用的新见解。
4植物分子生物学和生物技术部,COA,IGKV,Raipur(CG)摘要:背景:在Rainout庇护所中进行了一个实验,其中包括五种ininda rice的五种品种/基因型,暴露于不同浓度的两种不同形式的Iron viz。 视觉评分量表用于筛选基因型和过量铁对不同的营养性状的影响,在不同的营养性状上,发现根重量和芽量对两种形式的过量铁浓度和铁对不同基因型的影响更敏感。 主体:在本实验中,五种含义米的变种/基因型,在两种不同形式的铁效率的不同浓度下暴露于不同的铁(FESO 4)和铁(FECL 3)。在两种不同形式的铁,纤毛形式的毒性是有毒的,而不是铁含量较高的氯化物,而没有智力有毒的毒性有毒。 在视觉评分的基础上,我们确定了4种耐受性的基因型(Dagad Deshi,IBD-1,RRF 127和RRF 105)和Swarna是形成铁铁和铁铁的易感基因型。 Swarna和IBD-1的十字架用于F 4代的开发,并根据从F 4代获得的基因型和表型数据确定QTL。 使用间隔映射(IM)方法确定了总共13个QTL。 这些QTL是基于R 2或表型方差的主要QTL和次要QTL(PVE%)。 在复合间隔映射方法中,总共检测到二十四个主要和次要QTL,其中十个是主要的QTL。 (Bouman等,2002)。4植物分子生物学和生物技术部,COA,IGKV,Raipur(CG)摘要:背景:在Rainout庇护所中进行了一个实验,其中包括五种ininda rice的五种品种/基因型,暴露于不同浓度的两种不同形式的Iron viz。视觉评分量表用于筛选基因型和过量铁对不同的营养性状的影响,在不同的营养性状上,发现根重量和芽量对两种形式的过量铁浓度和铁对不同基因型的影响更敏感。主体:在本实验中,五种含义米的变种/基因型,在两种不同形式的铁效率的不同浓度下暴露于不同的铁(FESO 4)和铁(FECL 3)。在两种不同形式的铁,纤毛形式的毒性是有毒的,而不是铁含量较高的氯化物,而没有智力有毒的毒性有毒。在视觉评分的基础上,我们确定了4种耐受性的基因型(Dagad Deshi,IBD-1,RRF 127和RRF 105)和Swarna是形成铁铁和铁铁的易感基因型。Swarna和IBD-1的十字架用于F 4代的开发,并根据从F 4代获得的基因型和表型数据确定QTL。使用间隔映射(IM)方法确定了总共13个QTL。这些QTL是基于R 2或表型方差的主要QTL和次要QTL(PVE%)。在复合间隔映射方法中,总共检测到二十四个主要和次要QTL,其中十个是主要的QTL。(Bouman等,2002)。rm 152和RM 264染色体上的标记物在8个特征上的变化和芽中Fe +3含量的变化相关。结论:不同剂量的铁下与铁耐受性相关的各种特征的基因型之间的显着差异。通常,高剂量的铁对基因型具有毒性作用。在铁铁的来源中,铁的毒性更具毒性,但没有螯合剂的铁含量高于铁的毒性。根重量和芽重对过多的铁关键字更敏感:水稻,铁毒性,耐受性,铁浓度,QTLS1。简介稻米是印度的杰出农作物,是世界各地人民的主要谷物和主食之一。印度是世界上最大的水稻生产商之一,占全世界水稻生产的20%,含有高营养价值和热量价值。大部分土地约有1.29亿公顷土地都属于水稻种植,但存在主要的毒性和营养不足问题,据报道,其占全世界造成了1亿公顷土地的造成。(Becker and Asch 2005)。铁是一项重要的微量营养素,诸如叶绿素合成,叶绿体的结构和功能等许多作品,在光合作用过程中有助于光合作用,叶绿素合成,呼吸,氮固定,固定性,摄取机制(Kim and Rees,1992)。(Fageria等人因此,有氧大米通常患有微量营养素缺乏症,主要是吸收铁以两种形式进行,第一一种亚铁(Fe +2)和第二个铁离子((Fe +3),但铁铁(Fe 2+)离子主要吸收了铁的形式,它可能会导致营养失调或营养障碍状况,而在植物中造成了损害状态,并且在低地毒性中发现了更常见的毒性, ,2006年和Fageria等,1987)。另一方面,铁的铁的形式已通过螯合剂(植物剂)(Phytosiderphores)在植物根膜上运输,并且这种吸收通常在高地状态下发生,但这是低吸收离子的。,2006年和Fageria等,1987)。另一方面,铁的铁的形式已通过螯合剂(植物剂)(Phytosiderphores)在植物根膜上运输,并且这种吸收通常在高地状态下发生,但这是低吸收离子的。
早期疫病(EB),由linariae(Neerg。)(SYN。A。tomatophila)Simmons是一种影响世界各地的西红柿(Solanum lycopersicum L.)的疾病,具有巨大的经济影响。本研究的目的是绘制与西红柿中EB耐药性相关的定量性状基因座(QTL)。F 2和F 2:3的映射种群由174条线组成,这些群体在2011年的自然条件下评估了NC 1celbr(抗性)×Fla。7775(易感性),并通过人工接种在2015年的温室中进行了自然条件评估。总共使用了375个具有特定PCR(KASP)测定法的基因分型父母和F 2种群的分析。表型数据的广泛遗传力估计为2011年和2015年的疾病评估分别为28.3%和25.3%。QTL分析显示,六个QTL与染色体2、8和11(LOD 4.0至9.1)上的EB抗性相关,解释了3.8至21.0%的表型变异。这些结果表明,NC 1celbr中EB耐药性的遗传控制是多基因的。这项研究可能有助于将EB抗性QTL和标记辅助选择(MAS)进一步绘制,以将EB耐药基因转移到精英番茄品种中,包括扩大番茄中EB耐药性的遗传多样性。
小黑麦的抽象冻结耐受性是导致其冬季坚韧性的主要特征。基因组区域的鉴定 - 定量性状基因座(QTL)和与冬季六倍体小黑细胞的冻结耐受性相关的分子标记 - 是这项研究的目的。为此,开发了一个新的遗传连锁图,该图是针对从“ hewo”×'magnat'f 1混合体衍生而来的92个双倍线的人口。在两个冬季,将这些线条与父母一起经过三次冻结耐受性测试。在自然秋季/冬季条件下生长和冷硬化,然后在受控条件下冻结。冻结耐受性被评估为植物回收(REC),冻结后的叶子和叶绿素荧光参数(JIP)的电解质泄漏(EL)。使用复合间隔映射(CIM)和单个标记分析(SMA)鉴定出几个荧光参数,电解质泄漏以及幸存植物百分比的三个一致QTL。第一个基因座QFR.HM-7A.1解释了冻结后电解质泄漏和植物恢复的9%。在4R和5R染色体上发现了两个QTL,解释了植物恢复中多达12%的变异,并通过选定的叶绿素荧光参数共享。最后,用于叶绿素荧光参数检测到主要基因座QCHL.HM-5A.1,该参数解释了表型变异的19.6%。此外,我们的结果证实了JIP测试是评估在不稳定的冬季环境下冻结耐受性的宝贵工具。在铬囊7a.1、4R和5R上共同存在的QTL清楚地表明,植物生存的生理和遗传关系在冷冻后,具有维持光系统II的最佳光化学活性和保存细胞膜完整性的能力。所鉴定的QTL中的基因包括编码BTR1样蛋白,跨膜螺旋蛋白(如钾通道)的跨膜螺旋蛋白和磷酸酯水解酶响应渗透胁迫以及参与基因表达调节的蛋白质的磷酸酯水解酶。
营养压力导致全球 20 多亿人口营养不良。要么是我们商业化种植的谷物、豆类和油籽作物缺乏必需营养素,要么是这些作物生长的土壤中矿物质含量越来越少。不幸的是,我们的主要粮食作物缺乏正常人体生长所需的微量营养素。为了克服营养不足的问题,应更加重视鉴定与必需营养素有关的基因/数量性状位点 (QTL),并通过标记辅助育种将其成功部署到优良育种品系中。本文介绍了主要粮食作物中蛋白质含量、维生素、常量营养素、微量营养素、矿物质、油含量和必需氨基酸的已鉴定 QTL 的信息。这些 QTL 可用于开发营养丰富的作物品种。基因组编辑技术可以快速精确地修改基因组,并直接丰富优良品种的营养状况,在应对营养不良的挑战方面具有光明的未来。
摘要:一个重组的近交系数量,包括371条线,由每个尖峰(KNP)基因型T1208和低KNPS基因型Chuannong18(CN18)开发。由小麦55k SNP阵列构建的遗传连锁图由11,583个标记组成。在三年内检测到与KNP有关的定量性状基因座(QTL)。分别使用ICIM-BIP,ICIM-MET和ICIM-EPI方法来识别八个,二十七个和四个QTL。一个QKTL,QKNPS.SAU-2D.1,在染色体2D上映射,可以平均解释18.10%的表型变化(PVE),并被视为KNP的主要稳定QTL。此QTL位于2D染色体上的0.89 MB间隔,并由标记物AX-109283238和AX-111606890倾斜。此外,设计了与qknps.sau-2d.1紧密相关的Kompetive Primentififififif PCR(KASP)标记的KASP-AX-111462389。QKNPS.SAU-2D.1对KNP的遗传作用成功地确认了两个RIL种群。结果还表明,KNPS和1000个内核重量(TKW)的显着增加是由QKNPS.SAU-2D.1引起的,这是由于尖峰数量(SN)的减少而克服了劣势,并最终导致晶粒产量的显着增加。此外,在QKNPS.SAU-2D.1位于中国春季参考基因组中的间隔内,仅发现了十五个基因,并且两个可能与KNP相关的基因都被鉴定出来。qknps.sau-2d.1可能会为未来的高产小麦育种提供新的资源。
旨在表征和研究调控性数量性状基因座 (QTL) 的研究也揭示了个体之间的表型差异,包括疾病风险和药物反应的差异。调控性 QTL 效应高度依赖于环境,可能仅在特定条件下表现出来。原则上,诱导性多能干细胞 (iPSC) 可以分化成体内的任何细胞类型,当与单细胞 RNA 测序相结合时,iPSC 能够在不同环境中大规模映射调控性 QTL。挑战在于找到一种方法来快速扩展我们可以表征的细胞类型和细胞状态的维度。为了解决这个问题,我们开发了一种引导式 iPSC 分化方案,可以快速生成时间和功能各异的心脏相关细胞类型。在短短 8-10 天内,我们就能持续复制在费力的定向分化时间进程研究中看到的心脏祖细胞,以及成熟心脏类器官中存在的终末细胞类型。利用引导分化,人们可以快速表征空间和时间多样化的心脏细胞类型中的调控变异和基因与环境的相互作用。