摘要:耕种的花生(Arachis hypogaea L.)是全球重要的油和现金作物。一百个烟和种子的重量是花生产量的重要组成部分。在当前的研究中,为了揭开一百个pod重量(HPW)和百分子重量(HSW)的遗传基础,从JH5(JH5,大豆荚和种子重量和种子重量)之间的十字架开发了一个重组近交系(RIL)人群,并使用M130(小荚和种子重量)(小荚和种子重量),并用来识别QTLS和HPW和HPW。使用SSR,AHTE,SRAP,TRAP和SNP标记构建了一个集成的遗传链接图。该地图由3130个遗传标记组成,分配给20个染色体,并覆盖1998.95 cm,平均距离为0.64 cm。在此基础上,HPW和HSW的31个QTL位于7个染色体上,每个QTL占表型方差的3.7–10.8%(PVE)。其中,在多个环境下检测到了七个QTL,并且在B04和B08上发现了两个主要的QTL。值得注意的是,染色体A08上的QTL热点在2.74 cm的遗传间隔内包含7个QTL,其中包括0.36 MB物理图,包括18个候选基因。Arahy.d52S1Z,Arahy.ibm9rl,Arahy.W18Y25,Arahy.cplc2w和Arahy.14H.14H可能在调节花生荚和种子重量中发挥作用。这些发现可以促进进一步研究培养花生中影响豆荚和种子重量的遗传机制。
对大西洋鲑鱼中传染性胰坏死病毒(IPNV)的遗传抗性是一个罕见的特质例子,其中一个基因座(QTL)几乎解释了几乎所有遗传变异。基于此QTL的遗传标记测试在鲑鱼染色体上的26染色体已广泛应用于选择性育种,以显着降低疾病的发生率。在当前的研究中,全基因组测序和功能注释方法被应用于表征QTL区域中的基因和变体。这是通过对IPNV挑战的纯合抗性和纯合易感基因型的鲑鱼炸之间差异表达的分析来补充的。这些分析指向NEDD-8激活酶1(NAE1)基因是QTL效应的推定功能候选者。通过NAE 1基因的CRISPR-CAS9敲除NAE 1在IPN耐药性中的作用,并在大西洋鲑鱼细胞系中NAE1蛋白活性的化学抑制作用,这两者都导致生产性IPNV复制的降低显着降低。相比之下,先前声称为病毒的细胞受体的候选基因的CRISPR-CAS9敲除(CDH 1)对生产性IPNV复制没有重大影响。这些结果表明,NAE 1是影响鲑鱼中对IPNV抗性的主要QTL的原因,提供了进一步的证据,证明了Neddylation在宿主病原体相互作用中的关键作用,并突出了将高通量基因组学方法与TAR GETED基因组编辑结合的遗传基础的疾病抗病基础的高通用基因组学方法的价值。
摘要:谷物产量是玉米中最关键和最复杂的定量性状。内核长度(KL),内核宽度(kW),内核厚度(KT)和与核大小相关的数百 - 内核重量(HKW)是玉米中与产量相关性状的必不可少的组成部分。通过广泛使用定量性状基因座(QTL)映射和全基因组关联研究(GWAS)分析,已经发现了数千个QTL和定量性状核苷酸(QTN)来控制这些性状。但是,只有其中一些被克隆并成功地用于育种计划。在这项研究中,我们详尽地收集了与四个性状相关的基因,QTL和QTN,进行了QTL和QTN的聚类识别,然后将QTL和QTN簇合并以检测共识热点区域。总共确定了与内核大小相关性状的31个热点。他们的候选基因被预测与调节内核发展过程的众所周知的途径有关。可以进一步探索识别的热点,以进行细化和候选基因验证。最后,我们提供了高产和优质玉米的策略。这项研究不仅会促进因果基因的克隆,还可以指导玉米的繁殖实践。
我们采用了三种方法来定位抗黄锈病基因 Yr7 并识别小麦中的相关 SNP。首先,我们使用传统的 QTL 定位方法,即使用双单倍体 (DH) 群体,并将 Yr7 定位到 2B 染色体的低重组区域。为了精细定位 QTL,我们使用了关联定位面板。两个群体都进行了 SNP 阵列基因分型,允许根据常见的分离 SNP 进行 QTL 比对和全基因组关联扫描。对跨越 QTL 间隔的关联面板进行分析,将间隔缩小到单个单倍型块。最后,我们使用对抗性和易感性 DH 群体进行测序定位,以识别间隔中与之前建议的 Yr7 候选基因具有高同源性的候选基因,并以更高的多态性密度填充 Yr7 间隔。我们强调了将测序映射结合起来的强大功能,它提供了区间内基于基因的分离多态性的完整列表,并具有关联映射面板的高重组、低 LD 精度。我们的测序映射方法适用于任何性状,我们的结果验证了该方法在小麦中的有效性,在小麦中,通过近乎完整的参考基因组序列,我们能够定义一个包含致病基因的小区间。
胸膜售出是一种全球蘑菇作物,具有营养和药用益处。但是,多种商业特征的遗传基础仍然未知。为了解决这个问题,我们分析了两个代表性品种“ Heuktari”和“ Miso”的定量性状基因座(QTLS),具有明显不同的等位基因。构建了一个具有11个连锁基团的遗传图,其中27个QTL分配给14个特征。QTL中解释的表型变化范围为7.8%至22.0%。分别估计了针头周期和有效齿轮的数量,相对较高的LOD值为6.190和5.485。一些QTL衍生的分子标记物在近交系中显示出选择精度的潜在增强率,尤其是对于帽形状(50%)和帽厚度(30%)。候选基因是从QTL区域推断出的,并使用QRT-PCR验证,特别是对于囊肿和谷胱甘肽途径,与Cap Yellowness有关。这项研究中的分子标记物有望促进Heuktari和Miso系的繁殖,并提供探针以鉴定P中的相关基因。ofteatus。
用于QTL映射的过程之一涉及越过两个纯合菌株,这些菌株在多个基因座的等位基因中明显不同。f 1后代互相交叉或反向交叉以产生重组。您知道,紧密联系的基因倾向于更频繁地保持在一起,而在不同的染色体上或在同一染色体上相距遥远的基因将分别通过独立的分类和交叉产生重组者。然后,针对一个或多个定量性状测量F 2后代。如果在特定标记等位基因的遗传和定量表型之间观察到相关性,则表示标记和QTL之间的联系。这种方法可以潜在地检测到具有基因组宽分子标记物的可用性影响性状的大多数QTL。
大豆是全球种子蛋白和油的主要来源,在种子中平均成分为40%蛋白质和20%的油。这项研究的目的是确定使用种子蛋白和油含量的定量性状基因座(QTL),该蛋白质和油含量利用跨平均蛋白质含量线构建的种群,PI 399084,PI 399084到另一个具有低蛋白质含量值的线,PI 507429,均来自USDA Soybeanbeanbeanebean soybeanbean soybeanbean soybeanbeanbean collection。在四年内,对重复的近交系(RIL)人群,PI 507429 X PI 399084进行了评估(2018-2021);使用近红外反射光谱分析种子的种子蛋白质和油含量。使用测序使用基因分型重新列出了重组近交系和两个父母。总共12,761个分子标记物来自基因分型,通过测序,Soysnp6k Beadchip和来自已知蛋白质QTL染色体区域的选择的简单序列重复(SSR)标记来映射。在2号染色体上鉴定出一个QTL,该QTL解释了种子蛋白含量的56.8%的56.8%,种子油含量最高可达43%。15染色体上鉴定出的另一个QTL解释了种子蛋白质变异的27.2%和种子油含量变化的41%。这项研究的蛋白质和油QTL及其相关分子标记物将在繁殖中有用,以改善大豆的营养质量。
大豆是全球种子蛋白和油的主要来源,在种子中平均成分为40%蛋白质和20%的油。这项研究的目的是确定使用种子蛋白和油含量的定量性状基因座(QTL),该蛋白质和油含量利用跨平均蛋白质含量线构建的种群,PI 399084,PI 399084到另一个具有低蛋白质含量值的线,PI 507429,均来自USDA Soybeanbeanbeanebean soybeanbean soybeanbean soybeanbeanbean collection。在四年内,对重复的近交系(RIL)人群,PI 507429 X PI 399084进行了评估(2018-2021);使用近红外反射光谱分析种子的种子蛋白质和油含量。使用测序使用基因分型重新列出了重组近交系和两个父母。总共12,761个分子标记物来自基因分型,通过测序,Soysnp6k Beadchip和来自已知蛋白质QTL染色体区域的选择的简单序列重复(SSR)标记来映射。在2号染色体上鉴定出一个QTL,该QTL解释了种子蛋白含量的56.8%的56.8%,种子油含量最高可达43%。15染色体上鉴定出的另一个QTL解释了种子蛋白质变异的27.2%和种子油含量变化的41%。这项研究的蛋白质和油QTL及其相关分子标记物将在繁殖中有用,以改善大豆的营养质量。
我们采用了三种方法来定位抗黄锈病基因 Yr7,并确定小麦中相关的 SNP。首先,我们使用传统的 QTL 定位方法,即双单倍体 (DH) 群体,并将 Yr7 定位到 2B 染色体的低重组区域。为了精细定位 QTL,我们使用了关联定位面板。两个群体都进行了 SNP 阵列基因分型,允许根据常见的分离 SNP 进行 QTL 比对和全基因组关联扫描。对跨越 QTL 间隔的关联面板进行分析,将间隔缩小到单个单倍型块。最后,我们使用对抗性和易感性 DH 群体进行测序定位,以识别间隔中与之前建议的 Yr7 候选基因具有高同源性的候选基因,并以更高的多态性密度填充 Yr7 间隔。我们强调了将测序映射结合起来的强大功能,它提供了区间内基于基因的分离多态性的完整列表,并具有关联映射面板的高重组、低 LD 精度。我们的测序映射方法适用于任何性状,我们的结果验证了该方法在小麦中的有效性,在小麦中,通过近乎完整的参考基因组序列,我们能够定义一个包含致病基因的小区间。
医学遗传学的一个基本问题是遗传背景如何改变突变的表型结果。我们通过关注线虫表皮中表现出干细胞特性的接缝细胞来解决这个问题。我们证明,与接缝细胞命运维持有关的 GATA 转录因子 egl-18 的假定无效突变在夏威夷的 CB4856 分离株中比在布里斯托尔的实验室参考菌株 N2 中更耐受。我们确定了两个分离株之间表型表现力差异的多个数量性状基因座 (QTL)。这些 QTL 揭示了通过增强 Wnt 信号传导来强化接缝细胞命运的隐秘遗传变异。在一个 QTL 区域内,CB4856 中的热休克蛋白 HSP-110 中的单个氨基酸缺失足以改变 Wnt 信号传导和接缝细胞发育,强调保守的热休克蛋白的自然变异可以塑造表型表现力。