位于猪染色体17上的五个单核苷酸多态性(SNP)与约克郡猪的LMD显着相关。通过整合链接差异和链接分析(LDLA)和高通量染色体构象捕获(HI-C)分析,将10 KB的定量性状基因座(QTL)鉴定为候选功能基因组区域。基于GWAS,HI-C荟萃分析和顺式调节元件数据的综合结果,BMP2基因被鉴定为LMD的候选基因。通过目标区域测序进一步验证了已鉴定的QTL区域。进一步,通过使用双 - 荧光素酶测定和电泳迁移率分析(EMSA),两个SNP,包括位于增强剂区域的SNP RS3218466600,以及位于启动子区域中的SNP RS1111440035,将其确定为候选者的SNP,是与LMD功能相关的候选SNP。
拷贝数变异(CNV)是遗传变异的重要来源,它通过多种机制影响多种经济性状。此外,基因组扫描可以识别许多影响经济性状的数量性状位点(QTL),而全基因组关联研究(GWAS)可以定位与表型变异相关的遗传变异。在本研究中,我们开发了一种称为 GWAScore 的方法,该方法收集 GWAS 汇总数据以识别潜在候选基因,并将 CNV 整合到 QTL 和高置信度 GWAScore 区域以检测影响绵羊生长性状的关键 CNV 标记。我们得到了 197 个与候选 CNV 重叠的候选基因。一些关键基因(MYLK3、TTC29、HERC6、ABCG2、RUNX1 等)显示出比其他候选基因显著更高的 GWAScore 峰值。在本研究中,我们开发了 GWAScore 方法来挖掘候选基因作为绵羊分子育种标记的潜在价值。
每子房胚珠数 (ONPO) 决定了每果种子数的最大潜力,而种子数是作物种子产量的直接组成部分。本研究旨在利用新开发的油菜双单倍体 (DH) 群体剖析 ONPO 的遗传基础和分子机制。在所有四个研究环境中,201 个 DH 品系的 ONPO 呈正态分布,变化范围从 22.6 到 41.8,表明数量遗传适合于 QTL 定位。开发了 19 个连锁群内 2111 个标记的骨架遗传图谱,总长度为 1715.71 cM,标记间平均为 0.82 cM。连锁图谱鉴定出 10 个 QTL,分布在 8 条染色体上,解释 7.0-15.9% 的表型变异。其中四个与报道的相同,两个被重复检测到且影响相对较大,凸显了它们在标记辅助选择中的潜力。高、低 ONPO 品系两库子房(胚珠起始阶段)的植物激素定量分析显示,九种亚型植物激素的水平存在显著差异,表明它们在调节胚珠数量方面发挥着重要作用。转录组分析鉴定出两库之间 7689 个差异表达基因 (DEG),其中近一半富集到已报道的调控 ONPO 基因的功能类别中,包括蛋白质、RNA、信号传导、杂项、发育、激素代谢和四吡咯合成。整合连锁 QTL 作图、转录组测序和 BLAST 分析,鉴定出已报道的胚珠数基因的 15 个同源物和 QTL 区域中的 327 个 DEG,这些被视为直接和潜在的候选基因。这些发现进一步加深了对ONPO遗传基础和分子机制的认识,将有助于未来基因克隆和遗传改良,从而提高油菜种子产量。
我们发现本研究检测到的与 PH 和 SC 相关的稳定 QTL 与以前的报告一致。例如,Rht-B1b 位于 4B 染色体上约 30.8 Mb 处,位于与 qPH4B 对应的染色体区域内 [5];qSC2D.1 位于分子标记 A61578 和 A61731 之间的 20.8–30.3 Mb 位置,与 Chai 等人报道的可显著缩短穗长的 Rht8-D1 紧密连锁 [11];qSC7D 位于分子标记 A202015 和 A202077 之间的 584.5-588.2 Mb 位置,与调节每个穗的小穗数的 WAPO1-7D 紧密连锁 [41]。我们还鉴定出几个推测为 PH 和 SC 的新 QTL,包括 7BL 染色体上的 qPH7B.1,LOD 得分为 10.3,可解释 7.0% 的表型变异
摘要 锈病,包括叶锈病、条锈病/黄锈病和秆锈病,严重影响小麦 (Triticum aestivum L.) 的产量,每年造成巨大的经济损失。培育和推广具有遗传抗性的品种是控制这些疾病最有效和可持续的方法。小麦育种者用于选择抗锈病的遗传工具包已迅速扩展,利用最新的基因组学、作图和克隆策略鉴定了大量基因位点。本综述的目的是建立一个小麦基因组图谱,全面总结已报道的与抗锈病相关的基因位点。我们的图谱总结了过去二十年 170 篇出版物中针对三种锈病绘制的数量性状基因位点 (QTL) 和特征基因。根据最新的小麦参考基因组 (IWGSC RefSeq v2.1),总共有 920 个 QTL 或抗性基因被定位在小麦的 21 条染色体上。有趣的是,26 个基因组区域包含多个锈病基因座,表明它们可能对两种或多种锈病具有多效性。我们讨论了一系列利用这些丰富的遗传信息来有效利用抗性来源的策略,包括利用基因组信息来堆叠理想的和多个 QTL,以开发具有增强的抗锈病小麦品种。
农业面临的最大挑战之一在于找到策略,从而最大程度地减少因害虫和疾病而引起的农作物产量损失。白粉病(PM)是一种广泛的真菌疾病,影响了多种农作物。例如,在黄瓜(Cucumis sativus L.)中,PM可导致高达40%的损失(他等人2022)。各种研究的重点是鉴定有益于黄瓜育种计划的PM抗药性(PMR)基因(Liu等人2008)。 定量性状基因座(QTL)用于映射PMR的表征将霉菌抗性基因座8(CSMLO8)基因的破坏与黄瓜中的PM抗ANCE联系在一起。 然而,尽管CSMLO8的功能损失对于PMR是必不可少的,但这还不足以产生完全的阻力(Nie等人。 2015a,2015b; Berg等。 2015)。 耐PM的QTL还包含CSMLO家族的其他成员,指出超过1个CSMLO基因参与PM耐药性(Schouten等人。 2014)。 一项研究将MLO蛋白描述为钙调蛋白蛋白的钙通道蛋白(Gao等人 2022),表明钙信号传导与MLO介导的PM抗性有关。 但是,PM抗性的组成部分和机制均未完全理解。2008)。定量性状基因座(QTL)用于映射PMR的表征将霉菌抗性基因座8(CSMLO8)基因的破坏与黄瓜中的PM抗ANCE联系在一起。然而,尽管CSMLO8的功能损失对于PMR是必不可少的,但这还不足以产生完全的阻力(Nie等人。2015a,2015b; Berg等。2015)。耐PM的QTL还包含CSMLO家族的其他成员,指出超过1个CSMLO基因参与PM耐药性(Schouten等人。2014)。一项研究将MLO蛋白描述为钙调蛋白蛋白的钙通道蛋白(Gao等人2022),表明钙信号传导与MLO介导的PM抗性有关。但是,PM抗性的组成部分和机制均未完全理解。
抽象关键信息使用祖先服装开发的多个双亲种群在番茄中鉴定出六个新型的水果重量QTL。在这些基因座的有益等位基因出现在半动脉的亚群中,并可能被抛在后面。这项研究为这些等位基因进入育种计划铺平了道路。摘要在农作物驯化过程中强烈选择了可食用器官的大小和重量。同时,人类还专注于水果和蔬菜的营养和文化特征,有时会反对对有益尺寸和重量等位基因的选择性压力。因此,器官重量的新型改进等位基因可能仍在祖先种质中分离。迄今为止,已经确定了影响番茄果实体重的五个驯化和多元化基因,但是体重增加的遗传基础尚未完全解释。 我们发现,在驯化和多样化期间,果实的体重逐渐增加,半动脉的亚群具有高表型和核苷酸多样性。 小肠和隔层水果组织成比例地增加,表明靶向选择。 我们开发了21个f 2种群,父母定为已知的果实体重基因,对应于从野外到完全驯化的西红柿进行的关键过渡。 这些父母还显示出果实体重属性的差异以及大小增加的发育时机。 对QTL-Seq的一个子集的一部分是针对QTL-Seq的,从而鉴定出六个未密封的果实重量QTL。迄今为止,已经确定了影响番茄果实体重的五个驯化和多元化基因,但是体重增加的遗传基础尚未完全解释。我们发现,在驯化和多样化期间,果实的体重逐渐增加,半动脉的亚群具有高表型和核苷酸多样性。小肠和隔层水果组织成比例地增加,表明靶向选择。我们开发了21个f 2种群,父母定为已知的果实体重基因,对应于从野外到完全驯化的西红柿进行的关键过渡。这些父母还显示出果实体重属性的差异以及大小增加的发育时机。对QTL-Seq的一个子集的一部分是针对QTL-Seq的,从而鉴定出六个未密封的果实重量QTL。随后通过后代测试对位于染色体1、2和3的三个QTL进行了验证。通过探索已知的果实体重基因和已确定的QTL的隔离,我们估计,新近鉴定的基因座中最有益的等位基因是从南美的半动脉亚群中引起的,并且不太可能传播到完全驯化的土地。因此,这些等位基因可以使用本研究中确定的种质和遗传资源纳入育种计划。
应对农业领域的紧迫挑战需要迅速推进育种计划,特别是对于葡萄等多年生作物。我们超越了传统的双亲数量性状基因座 (QTL) 定位,进行了一项全基因组关联研究 (GWAS),涵盖了智利育种计划中的 588 个葡萄品种,跨越三个季节并测试了 13 个关键的产量相关性状。一个强有力的候选基因 Vitvi11g000454 位于第 11 号染色体上,与植物通过茉莉酸信号对生物和非生物胁迫的反应有关,与浆果宽度有关,并有可能在葡萄育种中提高浆果大小。我们还在 2、4、9、11、15、18 和 19 号染色体上定位了与采后性状相关的新型 QTL,拓宽了我们对决定果实采后行为(包括腐烂、皱缩和重量减轻)的遗传复杂性的了解。利用基因本体注释,我们在性状和仔细研究的候选基因之间进行了比较,为未来植物育种中的性状特征识别工作奠定了坚实的基础。我们还强调了在 GWAS 分析中仔细考虑响应变量选择的重要性,因为在我们的研究中使用最佳线性无偏估计量 (BLUEs) 校正可能导致葡萄性状中一些常见 QTL 被抑制。我们的研究结果强调了开拓长期保存性状的非破坏性评估技术的必要性,为葡萄育种者和栽培者提供了改善采后鲜食葡萄质量和减少浪费的见解。
高种子活力可确保种子质量高、产量高。早期幼苗生长参数可指示水稻种子的活力。通过生理生长参数来判断种子活力是一种由许多数量性状基因座控制的复杂性状。通过纳入包括发芽率在内的六个幼苗期生理参数的所有表型组的基因型,准备了一个代表 274 个水稻地方品种种群的面板,以进行关联作图。在种群中观察到所研究的六个性状的巨大差异。该种群被分为 3 个基因组。固定指数表明种群中存在连锁不平衡。该种群被分为亚种群,每个亚种群都与 6 个生理性状相对应。共报告了 5 个 QTL,即发芽率(GP)的 qGP8.1;qSVII2.1、qSVII6.1 和 qSVII6。在该作图群体中验证了控制种子活力指数 II (SVII) 的 qSVI 11 . 2 和控制根冠比 (RSR) 的 qRSR11 . 1。此外,还鉴定出了 13 个控制生理参数的 QTL,例如控制种子活力指数 I 的 qSVI 11 . 1;控制种子活力指数 II 的 qSVI11 . 1 和 qSVI12 . 1;控制根系生长速率 (RRG) 的 qRRG10 . 1、qRRG8 . 1、qRRG8 . 2、qRRG6 . 1 和 qRRG4 . 1;控制根冠比 (RSR) 的 qRSR2 . 1、qRSR3 . 1 和 qRSR5 . 1,以及控制发芽率的 qGP6 . 2 和 qGP6 . 3。此外,还检测到了 qGP8 . 1 和 qSVI8 . 1 与 GP 和 SVI-1 共定位或共遗传;qGP6 . 2 和 qRRG6 . 1 与 GP 和 RRG 共定位或共遗传;qSVI11 . 1 和 qRSR11 . 1 与 SVI 和 RSR 共定位或共遗传。本研究鉴定的 QTL 将有助于改良水稻种子活力性状。