在本文中,我们讨论了基于融合蛋白的 SARS-CoV-2 疫苗的特征。我们重点研究了重组疫苗抗原,该疫苗抗原由融合蛋白组成,融合蛋白由 SARS-CoV-2 衍生的抗原或肽的组合或 SARS-CoV-2 抗原/肽与 SARS-CoV-2 无关的蛋白质/肽的组合组成。这些融合蛋白是为了增加疫苗抗原的免疫原性和/或实现免疫系统的特殊靶向性。基于蛋白质的疫苗方法仅在概念验证研究中得到举例说明,该研究使用 W-PreS-O,一种基于单一融合蛋白 (W-PreS-O) 的嵌合疫苗,将来自武汉 hu-1 野生型和 Omicron BA.1 的 RBD 与吸附于氢氧化铝的乙肝病毒 (HBV) 衍生的 PreS 表面抗原相结合。在感染 Omicron BA.1 之前,对叙利亚仓鼠进行了 W-PreS-O 疫苗评估,这些仓鼠每隔三周接种 W-PreS-O 或氢氧化铝(安慰剂)三次。通过 RT-PCR 测量上呼吸道和下呼吸道的中和抗体 (nAB) 滴度、体重、肺部症状和病毒载量。此外,还使用斑块形成试验测量了肺部的传染性病毒滴度。我们发现接种 W-PreS-O 疫苗的仓鼠产生了针对 Omicron BA.1 的强效 nAB,几乎没有出现肺炎,并且肺部的传染性病毒滴度显著降低。重要的是,接种 W-PreS-O 疫苗的仓鼠鼻腔中的病毒载量接近或高于 PCR 循环阈值
A&A评估和授权AES高级加密标准CA证书委员会CFR联邦法规CIO首席信息官CISO CISO首席信息安全官CNSS国家安全系统CNSSS国家安全系统CPOC网络安全性和隐私权委员会委员算法E.O.Executive Order FBCA Federal Bridge Certification Authority FIPS Federal Information Processing Standards FIPS PUB Federal Information Processing Standards Publication FISMA Federal Information Security Modernization Act FPKIPA Federal Public Key Infrastructure Policy Authority GSA General Services Administration ICMD Identity Credential & Access Management Division ISSM Information Systems Security Manager MAC Message Authentication Code NIST National Institute of Standards and Technology NISTIR National Institute of Standards and Technology Interagency Report OCIO Office of the Chief Information Officer OMB管理和预算办公室PII个人身份信息PKI PKI公共密钥基础设施RBD基于风险的决定RSA RIVEST-SHAMIR-ADLEMAN SAOP SAOP SAOP SAOP SAOP高级机构隐私权官员SHA SECUCE HASH ALGORITHM SECH ALGORITH SP SPS SP SP SP SP SP SP SP SP TLLS运输层运输层交通层美国农业部美国农业VPN VIRTUAL EVITHUTURE FIRVETURE NITVATURE NITVATURE FIRVETUAL网络
背景:自 2019 年 12 月首次出现以来,世界各地的定期更新表明,新型冠状病毒 2019 (COVID-19) 病例数正在迅速增加,这表明 COVID-19 不仅表现出快速传播模式,而且需要人为干预才能解决。截至今天 (2020-5-27),根据世界卫生组织 (WHO) 的数据,确诊的 COVID-19 病例数已超过 450 万,死亡人数超过 307,500 人。几乎所有国家都受到了 COVID-19 的影响,因此进行了各种药物试验,但是,针对性的治疗方法仍有待向公众提供。最近,血管紧张素转换酶 2 (ACE2) 因其被发现是 COVID-19 的潜在附着靶点而引起了一些关注。方法:我们回顾了有关 ACE2 分布和作用的最新证据、COVID-19 的结合机制及其与细胞损伤的相关性、ACE2 多态性及其与致命的 COVID-19 和易感性的关联,以及最后,目前基于 ACE2 的 COVID-19 药物疗法。结果:使用特定配体阻断 ACE2 受体结合域 (RBD) 可以阻止 COVID-19 结合,从而阻止细胞进入和损伤。相比之下,对 COVID-19 具有更高亲和力的可溶性 ACE2 可以中和 COVID-19,而不会影响天然存在的 ACE2 的稳态功能。最后,ACE2 突变及其对 COVID-19 结合活性的可能影响可能使研究人员能够在高危人群接触 COVID-19 之前识别他们。结论:ACE2 是减轻或预防 COVID-19 相关细胞损伤的有希望的靶点。关键词:ACE、ACE2、COVID-19。
疫苗接种前SARS-COV-2感染可以促进COVID-19疫苗接种和vaccination后突破性SARS-COV-2感染引起的保护,可以促进COVID-19疫苗接种的现有免疫力。这种“混合免疫”对SARS-COV-2变体有效。为了理解分子水平的“杂交免疫”,我们研究了抗RBD(受体结合结构域)抗体的互补性确定区域(CDR)(CDR),这些抗体从具有“杂种免疫”的个体中分离出来,以及从“幼稚”(不是SARS-COV-2感染)疫苗的个体中分离出来的。CDR分析是通过液相色谱/质谱 - 质谱法进行的。 主要成分分析和部分最小平方差分分析表明,CoVID-19接种疫苗的人共享CDR Pro填充物,并且预疫苗发生的SARS-COV-2感染或突破性感染进一步塑造了CDR ProFile,并在杂种中具有CDR PREFLE,而无需接种CDR疫苗,而无需感染CDR疫苗。 因此,我们的结果表明,杂交免疫的CDR率与疫苗接种引起的CDR ProFE不同。CDR分析是通过液相色谱/质谱 - 质谱法进行的。主要成分分析和部分最小平方差分分析表明,CoVID-19接种疫苗的人共享CDR Pro填充物,并且预疫苗发生的SARS-COV-2感染或突破性感染进一步塑造了CDR ProFile,并在杂种中具有CDR PREFLE,而无需接种CDR疫苗,而无需感染CDR疫苗。因此,我们的结果表明,杂交免疫的CDR率与疫苗接种引起的CDR ProFE不同。
摘要:目前,脑电图 (EEG) 解码任务中的最佳性能通常通过深度学习 (DL) 或基于黎曼几何的解码器 (RBD) 实现。最近,人们对深度黎曼网络 (DRN) 的兴趣日益浓厚,它可能结合了前两类方法的优势。然而,仍然有一系列主题需要额外的洞察力,为 DRN 在 EEG 中的更广泛应用铺平道路。这些包括架构设计问题,例如网络大小和端到端能力。这些因素如何影响模型性能尚未探索。此外,尚不清楚这些网络中的数据是如何转换的,以及这是否与传统的 EEG 解码相关。我们的研究旨在通过分析具有广泛超参数的 EEG DRN,为这些主题领域奠定基础。在五个公共 EEG 数据集上测试了网络,并与最先进的 ConvNets 进行了比较。在这里,我们提出了端到端 EEG SPDNet(EE(G)-SPDNet),并且我们表明这种宽的端到端 DRN 可以胜过 ConvNets,并且在这样做时使用生理上合理的频率区域。我们还表明,端到端方法比针对 EEG 的经典 alpha、beta 和 gamma 频带的传统带通滤波器学习更复杂的滤波器,并且性能可以从特定于通道的滤波方法中受益。此外,架构分析揭示了进一步改进的地方,因为整个网络可能未充分利用黎曼特定信息。因此,我们的研究展示了如何设计和训练 DRN 以从原始 EEG 推断与任务相关的信息,而无需手工制作的滤波器组,并强调了端到端 DRN(如 EE(G)-SPDNet)用于高性能 EEG 解码的潜力。
冠状病毒疾病2019年(Covid-19)是由新型严重的急性呼吸综合症2(SARS-COV-2)引起的,它引起了全球大流行。Omicron变体(B.1.1.529)于2021年11月在南非博茨瓦纳收集的标本中首次发现。Omicron已成为全球的主要变体,最近已经确定了几种Sublineages或Subvariants。与其他突变体的变体相比,Omicron变体具有高度表达的氨基酸突变,整个基因组中有近60个突变,其中大多数在尖峰(S)蛋白质中,尤其是在受体结合结构域(RBD)中。这些突变增加了ACE2受体的Omicron变体的结合功能,而Omicron变体也可能导致免疫逃脱。尽管引起了较轻的症状,但流行病学证据表明,与原型菌株以及其他先前的变体相比,Omicron变体具有更高的可传播性,更高的再感染和更高的传播。此外,大量数据表明,在大多数疫苗接种人群中,针对Omicron变异的特定中和抗体的水平减少,尽管CD4 +和CD8 + T细胞响应得到了维持。因此,Omicron变体逃避的机制仍不清楚。在这篇综述中,我们调查了Omicron变体的当前流行病状态和潜在的免疫逃逸机制。,我们专注于病毒表位突变,抗原漂移,杂交免疫力和“原始抗原罪”在介导免疫逃避中的潜在作用。这些见解可能会为我们提供更多有价值的简洁信息,以了解Omicron变体的传播。
简介感染和接种全球使用的任何一种主要 COVID-19 疫苗均可诱导针对 SARS-CoV-2 刺突 (S) 蛋白的体液免疫,其中大多数疫苗将 S 编码为单一抗原 (1–3)。抗 S 抗体靶向蛋白质内的多个区域,但主要关注的是中和无细胞病毒体的区域。这些抗体主要结合在受体结合结构域 (RBD) 内,在某些情况下结合在 N 端结构域 (NTD) 内,这两个结构域均位于蛋白质的 S1 结构域中。中和抗体可阻断或阻止 SARS-CoV-2 与进入受体血管紧张素转换酶 2 (ACE-2) 之间的结合,或阻止病毒进入所需的结合后事件 (4, 5)。它们被认为对于减少 SARS-CoV-2 的传播至关重要;因此,它们是预测 COVID-19 疫苗效力的关键指标 (6)。尽管中和抗体的重要性显而易见,但它们也有公认的局限性。中和表位的数量有限,导致 SARS-CoV-2 变体被快速选择,这些变体的突变会削弱抗体与关键中和位点的结合 (7, 8)。在人类群体中进化了大约 3 年后,令人担忧的 SARS-CoV-2 变体已基本摆脱了由祖先 S 抗原诱导的抗体的中和活性,并不断进化以逃避由较新的变体感染诱导的抗体。因此,疫苗在接种后的数月内,其预防感染的效力已经降低。一旦发生感染,SARS-CoV-2 可以直接在细胞间传播,进一步削弱中和抗体的效力 (9)。为了抵消细胞间病毒传播,抗体需要识别受感染细胞表面的病毒抗原,而不是中和无细胞病毒体 (10)。这些抗体会招募效应细胞(如 NK 细胞)来
摘要 目的 开发足够的 COVID-19 疫苗是抗击全球 SARS-CoV-2 大流行的重大突破。然而,疫苗接种效果在自身免疫性风湿病 (AIRD) 患者中可能会降低。本研究旨在确定导致 AIRD 患者体液疫苗接种反应减弱的因素。方法 使用替代病毒中和试验和针对 SARS-CoV-2 受体结合域 (RBD) 的抗体检测来测量 308 名完全接种疫苗的 AIRD 患者的疫苗接种反应。此外,还调查了 296 名免疫功能正常的参与者作为对照组。统计调整分析包括可能影响抗体反应的协变量。结果 AIRD 患者的抗体反应与免疫功能正常的个体相比较低(中和能力中位数 90.8% vs 96.5%,p<0.001;抗 RBD-IgG 中位数 5.6 S/CO vs 6.7 S/CO,p<0.001)。较低的抗体反应受免疫抑制疗法类型的显著影响,但不受风湿病诊断的影响,接受利妥昔单抗治疗的患者产生的抗体水平最低。接受霉酚酸酯、甲氨蝶呤或 Janus 激酶抑制剂治疗的患者的疫苗接种反应也降低。其他负面影响因素包括接种 AZD1222、高龄和前两次接种间隔较短。结论某些免疫抑制疗法与接种疫苗后较低的抗体反应有关。应考虑疫苗类型、年龄和接种间隔等其他因素。我们建议对有风险的 AIRD 患者进行抗体检测,并强调对这些患者进行加强疫苗接种的重要性。
冠状病毒疾病2019(Covid-19)引起了高度感染力的严重急性呼吸道综合征2(SARS-COV-2),继续是前所未有的全球健康危机[1]。其相关的发病率和死亡率导致了当前正在使用的不同SARS-COV-2疫苗的快速发展,而其他人仍在开发或处于临床试验的不同阶段。截至2021年3月18日,大约13次Covid-19-19疫苗已被批准在不同的国家使用,而其他几个疫苗正处于随机临床试验的不同阶段[2]。有趣的是,更多的人仍在出现,以提高功效,尤其是针对SARS-COV-2的新兴变体[3]。目前,尚无公认的共同治疗方法,因此,疫苗仍然是预防疾病的最重要的支点[4,5]。与许多其他疫苗一样,Covid-19疫苗的作用机理是基于主动免疫(例如活衰减,病毒载体和DNA/RNA疫苗)或被动免疫(例如单克隆/多克隆抗体)[6]。尽管在疫苗开发中取得了重大进展,但对安全性和有效性的担忧仍然是需要进一步研究的挑战。Irwin和Nkengasong的报告表明,所有人类中有70%必须被接种以消除Covid-19 [7]。在尼日利亚,尼日利亚疾病控制中心(NCDC)旨在接种尼日利亚人口的40%,并希望在2022年底之前取得70%的疫苗接种阈值,以消除Covid-19 [8]。截至2022年6月7日,全球总共服用了11,854,673,610个胶水剂量[9]。在尼日利亚,截至2022年5月29日,尼日利亚人约30,680,510(占人口的14.9%)至少服用了1剂,而20,096,868(占人口9.7%的人口的9.7%)服用了2剂2剂,因此已完全疫苗接种[10]。因此,尼日利亚的Covid-19疫苗的摄取仍然很低。关于宿主免疫反应对Covid-19的报告的雪崩及分子技术的进步促进了COVID-19-19S疫苗的快速开发。但是,缺乏有关SARS-COV-2感染引起的免疫力和疫苗诱导的免疫力之间可能差异的信息。因此,确定接种和未接种疫苗的个体的抗体反应以确定获得牛群免疫的可能性是临床重要性的。天然SARS-COV-2感染期间抗体产生的主要抗原是峰值(S)和核素蛋白(N)蛋白[11]。在感染SARS-COV-2之后;幼稚的B细胞通过抗原识别和CD4 + T细胞激活激活。这种激活导致一系列事件导致抗体和记忆B细胞的产生。可用的报告显示,大多数SARS-COV-2患者在患有病毒特异性IgG,IgA和IgM症状发作后不久同时发育[12-16]。但是,这种血清转化可能分阶段发生。 IGM血清转换早于IgG,IgG血清转化早于IgM和IgM和IgG的同步血清转换[12,17,18]。此外,血清转化的中位时间也有所不同[19]。Iyer等。 [17]和Long等。 [12]报告说,血清转化的中位时间在囊肿后11到13天之间(PSO)。 另外,Roéltgen等人。 [18]报告说,抗S受体结合结构域(RBD)IGM,IgG和IgA的住院患者的血清转化率达到了最大Iyer等。[17]和Long等。[12]报告说,血清转化的中位时间在囊肿后11到13天之间(PSO)。另外,Roéltgen等人。[18]报告说,抗S受体结合结构域(RBD)IGM,IgG和IgA的住院患者的血清转化率达到了最大
简介感染和接种全球使用的任何一种主要 COVID-19 疫苗均可诱导针对 SARS-CoV-2 刺突 (S) 蛋白的体液免疫,其中大多数疫苗将 S 编码为单一抗原 (1–3)。抗 S 抗体靶向蛋白质内的多个区域,但主要关注的是中和无细胞病毒体的区域。这些抗体主要结合在受体结合结构域 (RBD) 内,在某些情况下结合在 N 端结构域 (NTD) 内,这两个结构域均位于蛋白质的 S1 结构域中。中和抗体可阻断或阻止 SARS-CoV-2 与进入受体血管紧张素转换酶 2 (ACE-2) 之间的结合,或阻止病毒进入所需的结合后事件 (4, 5)。它们被认为对于减少 SARS-CoV-2 的传播至关重要;因此,它们是预测 COVID-19 疫苗效力的关键指标 (6)。尽管中和抗体的重要性显而易见,但它们也有公认的局限性。中和表位的数量有限,导致 SARS-CoV-2 变体被快速选择,这些变体的突变会削弱抗体与关键中和位点的结合 (7, 8)。在人类群体中进化了大约 3 年后,令人担忧的 SARS-CoV-2 变体已基本摆脱了由祖先 S 抗原诱导的抗体的中和活性,并不断进化以逃避由较新的变体感染诱导的抗体。因此,疫苗在接种后的数月内,其预防感染的效力已经降低。一旦发生感染,SARS-CoV-2 可以直接在细胞间传播,进一步削弱中和抗体的效力 (9)。为了抵消细胞间病毒传播,抗体需要识别受感染细胞表面的病毒抗原,而不是中和无细胞病毒体 (10)。这些抗体会招募效应细胞(如 NK 细胞)来