数据分析和人工智能中的大数据和技术进步的可用性导致越来越多的公司将算法定价纳入其业务中,以帮助做出定价和其他战略决策。定价算法可以通过允许公司在做出业务决策时实时分析众多变量和大量数据,从而改善竞争,最大化效率并最大程度地降低成本。但是,美国政府反托拉斯的执行者和私人原告越来越关注算法定价软件可以对竞争产生的影响,并指控在某些情况下,在某些情况下,使用算法的价格可以在竞争中促进竞争或更轻松地派遣挑选的公司或更轻松地派遣挑选的公司或更轻松地与Press的挑战或互动。其中一些论点正在测试美国反托拉斯法律的范围,法院将需要成为这种经常复杂且快速发展的技术合法性的最终仲裁者。同时,考虑将定价算法纳入其业务的公司应了解与之相关的法律风险。
摘要:随着信息技术的快速发展,恶意软件已成为高级网络安全威胁,针对计算机系统,智能设备和大规模网络实时。传统检测方法通常由于准确性,适应性和响应时间的限制而无法识别出新的恶意软件变体。本文对实时恶意软件检测的机器学习算法进行了全面综述,并根据其方法和有效性对现有方法进行了分类。该研究研究了最新进步,并评估了各种机器学习技术在以最小的假阳性和提高可伸缩性检测恶意软件时的性能。此外,还讨论了关键挑战,例如对抗性攻击,计算开销和实时处理约束,以及潜在的解决方案以增强检测能力。进行了经验评估,以评估不同机器学习模型的有效性,为实时恶意软件检测的未来研究提供了见解。
小时候,我经常想知道人们的思想是如何工作的。在我在计算机科学和工程方面的培训中,我认为它的功能像发条一样,因此必须有一种算法。但是,在学习算法设计时,我遇到了逆问题,将人类解决问题的方式转化为计算机算法。这仅是针对基本问题的。对于人类来说,计算机/数学的简单性似乎极为困难。例如,对我们来说很难乘以大量,但对计算机来说很琐碎。相比之下,对于我们来说,对我们来说很简单的东西对于计算机/数学来说非常困难。当我学习AI作为课程的一部分时,这变得非常明显。我觉得我们需要研究自然智力的运作方式,然后才能真正地设计人工智能。研究计算神经科学是桥梁差距的自然发展。
梅赛德斯 - 奔驰和德省大学慕尼黑大学的尤里卡·普罗米修斯(Eureka Prometheus Prometheus Prometheus Promist),以及1984年卡内基·梅隆大学的Navlab和ALV项目,为引入了1980年代的首款自给自足,真正的自动驾驶汽车,并在1984年引入了第一辆自给自足和真正的自动驾驶汽车。在早期阶段,自动驾驶汽车在神经网络(ALVINN)中使用自动陆上车使用神经网络来检测线路并导航。这些车辆受到处理缓慢的处理器和数据不足的限制。自动驾驶汽车必须做出更快的决定,并观察车辆存在的环境。在人工智能增长后,这些车辆配备了AI。AI连接到车辆中存在的每个传感器,并处理从传感器收集的数据。使用这些收集的数据是使用复杂算法的,AI实时做出决策。
本地化是移动机器人技术的关键方面,使机器人能够有效地导航其环境并避免障碍。当前的概率定位方法,例如自适应蒙特卡洛定位(AMCL)算法,是计算密集的,可能会在大图或高分辨率传感器数据中遇到困难。本文探讨了量子计算在机器人技术中的应用,重点是使用Grover的搜索算法来提高移动机器人的本地化效率。我们提出了一种新的方法,可以在2D地图中利用Grover的算法,从而更快,更有效地定位。尽管当前的物理量子计算机存在局限性,但我们的实验结果表明,对经典方法的速度显着,强调了量子计算改善机器人定位的潜力。这项工作弥合了量子计算和机器人技术之间的差距,为机器人定位提供了实用的解决方案,并为未来的量子机器人技术铺平了道路。
在空间风化的样品中应用计算机视觉算法来自动化太阳粒子轨道分析。K. Heller 1,J。A. McFadden 1,M。S. Thompson 1。 1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。 简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。 尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。 这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。 通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。 对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。 直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。 但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。 这两个模型在结构上是相同的,但在培训数据上却有所不同。A. McFadden 1,M。S. Thompson 1。1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。这两个模型在结构上是相同的,但在培训数据上却有所不同。在这里,我们应用这些ML技术来开发一个原型自动化程序,该程序可以自动检测和分析TEM图像中的SEP轨道,从而使未知样本中的SEP轨道更有效,更准确地注释。方法:机器智能程序(“模型”)旨在查找和计算提供的TEM图像中的所有SEP轨道,包括潜在的微弱或“隐形”轨道。由于轨迹而言,由于主要是与背景材料不同的强度线段的线段,该模型旨在识别线性强度差异的区域。两种单独的型号经过训练以提高性能 - 一种在较暗的背景(LOD)上搜索较轻的曲目,而一种搜索较轻的背景(DOL)上的较暗轨道(DOL)。拆分模型的决定在很大程度上旨在改善训练时间和模型性能,因为示例往往由LOD或DOL轨道组成。因此,将模型拆分可改善训练时间并减少处理时间,因为训练集和应用的差异减少为更简单,较小的模型提供了空间。此外,这使该模型可以应用于两种不同类型的扫描TEM(STEM)成像模式:深色场(DF),其中SEP轨道显得比周围的晶体更明亮,而明亮场(BF),其中SEP轨道显得比周围的晶体更暗。由于计算机以抽象的结构可视化数据,分析是按像素度量进行的,而不是与测量相关的
本文的目的是从国际法的角度了解相对较新的致命自动机器人和武器系统(LARS或法律)的领域,重点是人权遵守。最初,该主题成为2009年公众意识和讨论的主题,并很快获得了兴趣和批评。此类武器系统的发展同时升高了法律,道德,实用和道德问题。在没有针对他们的特定法律规定的情况下,本文应试图评估这种概念在多大程度上通过人道主义法的现有规定认为法律和道德理由。在任何情况下,由于法律提供了重要的福利,因此由于对人权,战斗外部和平民的影响,应在严重的法律保护下考虑它们。所有这些好处都必须以道德原则和法律规定为指导,无论是已经应用的,还是新的,可以更适合这一特定领域的规定。
a。 K-均值聚类b。分层聚类c。主成分分析(PCA)d。自动编码器3。强化学习算法增强学习(RL)的重点是通过与环境互动来做出决策的培训模型。该模型通过根据其采取的行动获得奖励或处罚来学习。a。 Q学习b。深Q-Networks(DQN)4。深度学习算法深度学习涉及具有许多层次(也称为深神经网络)的神经网络,它用于解决涉及非结构化数据(例如图像,音频和文本)的问题。a。卷积神经网络(CNN)b。复发性神经网络(RNN)和长期记忆(LSTM)网络c。生成对抗网络(GAN)d。变压器网络(BERT,GPT)5。机器学习的现实世界应用这里是ML产生重大影响的某些领域:
为了在高维空间中实现项目的目标,这项工作将利用域分解技术,特别是Pinn-PGD [2],以识别缺失的偏微分方程(PDE)项。此方法可以增加物理模型,从而通过求解修改后的PDE进行后续验证。该方法在源自非线性模型的数据上显示,而假定已知的物理模型是线性的。结果展示了提出的技术如何用非线性术语对线性模型进行补充,以发现原始的非线性公式。所提出的方法可用于表征船只与物理测量的结构建模的偏差,并增强原始材料建模公式。