●4801计算机科学I●4838机械制图和设计II●5236计算机科学II●5249计算机科学III:软件开发帽岩石●5250计算机科学III:数据库●5251计算机科学III:信息学III:信息学:信息学●5253 Computer Science III:Cybersecurity II:Cybersecurity II:Cybersecurity II●56 ARTACTECTART●5652 ARTACTECTER●5652 ARTACTECTERCTINTER●5652 ARTACTECTERT●5652 ARTACTECTERCTINTER●5652 ARTACTECTITIC电子和计算机技术II●7197 BIM体系结构●7200电力和电动机的基础●7202制造原理和设计●7223机械设计Capstone●7351计算机科学中的主题●7352 7361计算机科学●7361电子基础●7362电子基础●7362电子技术●7362电子capstone
摘要 - 在本文中,提出了一个务实的语义沟通框架,该框架提出了两种智能代理之间有效的面向目标的信息共享。特别是,语义被定义为封装从数据中提取的不同特征之间的典型因果关系和依赖关系的因果状态。所提出的框架利用了机器学习(ML)的新兴概念,称为心理理论(Tom)。它采用动态的两级(无线和语义)反馈机制来连续微调发射器的神经网络组件。感谢汤姆(Tom),发射器模仿了接收者创建神经网络操作语义解释的实际心理状态。然后,由于提出的动态两级反馈机制,接收器的估计心理状态被动态更新。在较低级别,传统的通道质量指标用于根据无线通信通道的质量优化通道编码过程,从而确保将语义表示形式有效地映射到有限的星座。此外,还引入了语义反馈水平,提供了有关接收者感知的语义效果的信息,并以最小的开销提供了信息。数值评估证明了该框架与减少量的有效通信的能力,同时保持相同的语义,优于不利用基于TOM的推理的常规系统。
Detailed Course Contents: Common Fractions, Decimal Fractions, Extending Unit Analysis, Percentages, Ratio, with Scientific Notation, Scientific Notation, Rounding, The Inflation Calculator, Tax Calculations, Powers and Roots, The Compound Interest Formula, Four Basic Rules of Algebra, Derivation of the Savings Plan Formula, Fractional Powers, Fractional Powers, The Loan Payment Formula, Principal and Interest Portions of Loan,统计,统计表和图,Excel中的频率表,Excel中的频率表,excel图中的频率表和饼图,具有多个数据集的Excel图中的线图,Excel平均值,中位数和模式的散点图,Excel,Excel,标准分数的标准偏差,Excel,标准分数和excel中的标准分数,统计级别的概率,概率的概率,组合概率,综合型号。
校园政策有关宗教观察的政策要求教师使每个人都合理,公平地与所有由于宗教义务而与授予家庭作业或预定考试的学生打交道。在本课程中,您必须在我的一个小时工作中来到我的办公室,并至少在潜在的冲突前两周与我讨论任何潜在的冲突。请参阅http://www.colorado的完整详细信息。edu/policies/fac_relig.html课堂行为学生和教师各自负责维持适当的学习环境。那些未能遵守这种行为标准的人可能会受到纪律处分。专业的礼貌和敏感性在个人和主题方面尤为重要。班级名册以学生的法律名称提供给教练。我将很乐意向您的请求尊敬您的请求,以替代名称或代词来解决您。请向我告知学期初期的这种偏好,以便我可以对记录进行适当的更改。请参阅http://www.colorado.edu/policies/classbehavior.html和http://www.colorado.edu/studentaffairs/judicialaffairs/code.html。
摘要新一代语言模型的出现因其卓越的理解和人类语言生成能力而彻底改变了自然语言处理(NLP)的领域。chatgpt成为一个基本模型,具有出色的优势。DeepSeek最近成为NLP的最新进步,在纯文本生成工作,语义分析和上下文依赖语言建模能力中表现出巨大的潜力。该研究调查并比较了DeepSeek和Chatgpt在评估主要应用于南亚阿拉伯语学习者的成人L2(第二语言)采集错误时的表现。使用此前提,我们旨在评估其在检测语言不准确性(形态学,语法,语义)和诊断L1(第一语言)的疗效方面的功效。方法包括对非本地阿拉伯语句子的错误分析,两个模型的比较评估以及对推理深度的对比评估。结果表明,DeepSeek在上下文驱动的错误检测(例如检测SOV单词订单转移时)的情况明显好得多,并且ChatGpt提出了更具主导性的相关反馈。但是,两者都需要微调提示来引入与语义/务实错误有关的反馈,例如缺少文章和方言不匹配。的贡献包括将AI工具集成到L2教育学的建议,强调对比度的演习和社会语言意识,以及针对L1靶向错误概况的培训AI的建议。这项研究将AI集成到针对成人L2学习者的可扩展解决方案的语言教学中,同时指出了模型中所需的改进。关键字:DeepSeek,Chatgpt,LLMS,母语影响(MTI),第二语言获取(SLA),AI辅助错误检测,对比语言学
估计相互作用的人类的3D姿势和形状以及来自单个野外图像的物体对于混合现实和机器人技术很重要。由于阻塞,深度歧义和广泛变化的物体形状,这具有挑战性。现有工作通过利用身体和物体上的表面接触点并使用这些来指导3D重建来应对这些挑战。不幸的是,获得3D接触注释需要昂贵的3D地面真相或耗时的手动标签。,根据大规模获取培训数据是一个挑战。我们通过开发一种称为InteractVLM的新型模型来解决此问题,该模型利用大型视觉语言模型(VLM)的广泛视觉知识。问题是,这些大型模型并未直接“理解” 3D人类对象接触。为了解决这个问题,我们利用了3D人类对象交互的现有小型数据集来微调大型模型以了解接触。但是,这是非平凡的,因为这种模型仅在2D中“仅”,而触点是继承的3D。因此,我们引入了一个新颖的“ RenderLecalize-Lift”模块,该模块:(1)通过多视图渲染将3D主体和物体表面嵌入2D空间,(2)训练一种新型的多视图本地化模型(MV-LOC),以推断2D,
先前的研究表明,在钢琴教学后,学龄前儿童在空间测试中得分更高。进行了三项研究以回答有关这些影响的三个问题:(1)通过钢琴教学增强了哪些认知过程?(2)不同类型的指令是否具有不同的影响?(3)这些效果是否耐用且可推广?在研究1中,在危险的学龄前儿童提供了每周的钢琴教学,计算机教学或两年没有指导。儿童使用大量标准化认知测试进行了预测试。结果表明,接受钢琴教学的儿童在需要空间和/或时间能力的测试中得分明显高于对照儿童。在研究2中,儿童接受了钢琴,唱歌或节奏乐器的指导。对照组的儿童没有收到任何指导。我们进行了与研究1中相同的测试。所有音乐组的得分都高于空间和时间任务上的对照。节奏小组在时间任务上得分高于钢琴和唱歌小组。钢琴和歌唱团的分数没有差异。研究3将获得音乐课的儿童与未接受指导的孩子,未入学的高风险儿童和中等收入小学的孩子的孩子进行了比较。在教学结束两年后,音乐团体在空间和时间任务上的得分继续高于所有其他小组。节奏组在时间和数学测试上继续得分高于对照。没有发现言语,记忆或阅读测试的效果。
最近的研究表明,大语模型(LLM)作为推理模块的有效性,可以将复杂的任务解构为更加可行的子任务,尤其是应用于图像的视觉推理任务时。相比之下,本文根据LLM的推理能力介绍了视频理解和推理框架(Vurf)。我们的一种新颖的方法是在视频任务的背景下扩展LLM的实用性,并利用它们从上下文框架内的最小输入和输出演示中概括的能力。我们通过使用成对的指令及其相应的高级程序来呈现LLM来利用他们的上下文学习能力,以生成可执行的视觉程序以供视频理解。为了提高计划的准确性和鲁棒性,我们实施了两种重要的策略。首先,我们采用由GPT-3.5提供支持的反馈生成方法,以纠正利用不支持功能的程序中的错误。其次,从最新的LLM输出自我进行的著作中汲取动机,我们通过将初始输出与LLM不受含义示例的结构限制的初始输出与本应生成的输出的结构对齐,从而提出了一种迭代程序,以提高内在示例的质量。我们在几个特定于视频的任务上的结果,包括视觉质量质量检查,视频预期,姿势估计和多效QA,说明了这些增强功能在提高视频任务的视觉编程方法方面的功效。
在预测具有平行颚夹具的机器人抓地力已得到很好的研究并广泛应用于机器人操作任务中,但多手指手的自然人抓握生成研究的研究仍然是一个非常具有挑战性的问题。在本文中,我们建议在世界上给定3D对象产生人类的抓。我们的主要观察结果是,对手接触点和物体接触区域之间的一致性建模至关重要。也就是说,我们鼓励先前的手接触点靠近对象表面,并且对象共同的接触区域同时通过手接触。基于手动接触一致性,我们在训练人类掌握的一代模型中设计了新的目标,还设计了一个新的自我监督任务,该任务允许在测试时间之前调整掌握生成网络。我们的实验表明,人类掌握的产生显着改善,而对最先进的方法的差距很大。更有趣的是,通过在测试时间内使用自我监督的任务来优化模型,它可以帮助您在看不见和室外对象上获得更大的收益。
减轻奖励黑客攻击 - 由于其学习目标中的缺陷或错误的特征,AI系统的表现不佳 - 在构建有能力且一致的模型方面面临着一个关键的挑战。我们表明,我们可以通过使用另一个观察模型的经验链(COT)推理的LLM来监视诸如OpenAI O3-Mini之类的前沿推理模型,例如OpenAI O3-Mini。COT监视可以比单独监视剂的动作和输出更有效,我们进一步发现,比O3-Mini(即GPT-4O)弱的LLM可以有效地监视更强大的模型。因为COT监视器可以有效地检测漏洞,因此自然要问是否可以通过将COT监视器直接纳入代理商的训练目标来抑制这些漏洞。我们表明,将COT监测器集成到强化学习奖励中确实可以在低优化制度中产生更有能力,更一致的代理,但我们发现,通过过多优化,代理商学习了混淆的奖励黑客攻击,将其隐藏在COT中,同时仍然表现出很大的奖励奖励率。由于很难分辨出COTS何时变得混淆,因此可能有必要通过不直接将强大的优化压力直接施加到经营链上来缴纳可监视性税,从而确保COTS保持可监视且可用于检测未对准的行为。