从 fMRI 脑记录中重建自然图像并解码其语义类别是一项挑战。获取足够多的图像对及其相应的 fMRI 响应(这些响应涵盖了巨大的自然图像空间)是难以实现的。我们提出了一种新颖的自监督方法,该方法远远超出了稀缺的配对数据,用于实现:(i)最先进的 fMRI 到图像重建,以及(ii)首次从 fMRI 响应进行大规模语义分类。通过在一对深度神经网络(从图像到 fMRI 和从 fMRI 到图像)之间施加循环一致性,我们在来自许多新颖语义类别的大量“未配对”自然图像(没有 fMRI 记录的图像)上训练我们的图像重建网络。这使得我们的重建网络能够适应非常丰富的语义覆盖,而无需任何明确的语义监督。具体而言,我们发现将我们的自监督训练与高级感知损失相结合,可以产生新的重建和分类能力。具体来说,这种感知训练能够很好地对从未见过的语义类别的 fMRI 进行分类,而无需在训练期间使用任何类别标签。这带来了:(i)前所未有的从从未见过的图像的 fMRI 图像重建(通过图像指标和人工测试进行评估),以及(ii)在网络训练期间对从未见过的类别进行大规模语义分类。以前从未证明过从 fMRI 记录中进行如此大规模(1000 种)语义分类。最后,我们为所学模型的生物一致性提供了证据。
1. Li, D. 等人。扩展分辨率结构化照明成像的内吞和细胞骨架动力学。91 Science 349 , 944–944 (2015)。92 2. Gustafsson, MGL 使用结构化照明显微镜将横向分辨率极限提高两倍。Journal of Microscopy 198 , 82-87 (2000)。94 3. Gustafsson, MGL 等人。通过结构化照明在宽视场荧光显微镜中实现三维分辨率加倍。Biophysical Journal 94 , 4957-4970 (2008)。96 4. Cragg, GE 和 So, PTC 使用驻波增强横向分辨率。Opt. Lett. 97 25 , 46-48 (2000)。 98 5. Kner, P. 等人。通过结构化照明对活细胞进行超分辨率视频显微镜检查。自然方法 6 , 99 339–342 (2009)。00 6. Hirvonen, LM 等人。活细胞的结构化照明显微镜检查。欧洲生物物理杂志 38 , 807–812 01 (2009)。02 7. Guo, Y. 等人。在毫秒时间尺度上以纳米级分辨率可视化细胞内细胞器和细胞骨架相互作用。Cell 175 , 1430-1442 (2018)。04 8. Huang, X. 等人。使用 Hessian 结构化照明显微镜实现快速、长期、超分辨率成像。自然生物技术 36 , 451–459 (2018)。 06 9. Chu, K. 等人。低信号水平结构照明显微镜的图像重建。Opt. 07 Express 22 , 8687-8702 (2014)。08 10. Wen, G. 等人。通过点扩展函数工程实现高保真结构照明显微镜。09 Light Sci Appl 10 , 70 (2021)。10 11. Jin, L. 等人。深度学习使结构照明显微镜具有低光照水平和更快的速度。Nat Commun 11 , 1934 (2020)。12 12. Qiao, C. 等人。用于光学显微镜图像超分辨率的深度神经网络的评估和开发。Nat Methods 18 , 194–202 (2021)。 14 13. Kobler, E. 等人。线性逆问题的总深度变分。CVPR,7546-7555(2020 年)。15 14. S. Bhadra。等人。断层扫描图像重建中的幻觉。IEEE 医学成像学报 40,3249-3260(2021 年)。17 15. Jakobs, S. 和 Wurm, CA 线粒体的超分辨率显微镜。化学生物学最新观点 20,9-15(2014 年)。19
摘要:本研究的重点是使用先进的计算机视觉和深度学习技术提出文本图像重建和赔偿框架来保存柬埔寨的历史高棉棕榈叶手稿。为了解决保存,使用卷积神经网络(CNN)和生成对抗网络(GAN)来填充受损图像中字符缺失的模式。该研究利用Sulukrith集[1],该集合由91,600张图像组成,分为两个部分:90,600个训练图像和1,000张测试图像。每个图像包含高棉棕榈叶脚本的单个字符。训练图像故意降解为三种不同的变体,每个变体均遭受三个级别的降解(1级,第2级和第3级)。评估性能并比较卷积神经网络(CNN)和生成对抗网络(GAN)模型的有效性,并采用了各种评估指标。这些指标包括均方根误差(MSE),峰值信噪比(PSNR)和结构相似性指数(SSIM)。通过根据这些指标评估两个模型的结果,可以观察到,GAN模型在MSE,PSNR和SSIM方面始终优于CNN模型。与CNN模型相比,GAN模型达到了较低的MSE值,较高的PSNR值和更高的SSIM值,这表明其在图像重建和保留原始文本方面具有出色的性能。
Covid-19的大流行仍然是我们时代最大的公共卫生危机。它对我们的健康和社会产生了深远而破坏性的影响。covid-19已以前所未有的规模影响了经济和劳动力市场,引起了严重的破坏,导致雇用人数,工作时间的数量以及所提供的工作空缺数量的急剧下降。打击病毒并寻求预防和减轻欧盟退出的进一步损害是我们的关键目标。既可能会扭转我们在过去十年来减少威尔士失业和经济不活动方面取得的进步,对那些经历社会经济劣势的人的影响最大,例如,妇女,黑人,亚洲和少数族裔社区,第一次进入妇女,残疾人和年轻人进入了第一次进入企业市场。
引言:对受影响的特定解剖结构进行三维(3-D)重建可以帮助临床医生更好地可视化和利用来自三维成像方式(包括计算机断层扫描(CT)或磁共振成像(MRI)[1])的体积事实。从临床图像中获取大脑解剖结构已被证实对术前计划和计算机辅助手术非常有用。从 CT 或 MRI 图像重建 3-D 模型的传统方法主要涉及图像处理和可视化技术,并且图像中已经存在三维数据。使用关于大脑形状和形状模型的一些预先记录从大脑图像进行三维建模已经成为一个研究感兴趣的话题[2]。根据用于重建的信息,可以从图像进行 3D 重建的方法可分为以下几种。
摘要:准确确定粒子径迹重建参数将成为高亮度大型强子对撞机 (HL-LHC) 实验面临的主要挑战。HL-LHC 同时发生的碰撞数量预计会增加,探测器占用率也会随之提高,这将使径迹重建算法对时间和计算资源的要求极高。命中次数的增加将增加径迹重建算法的复杂性。此外,由于探测器的分辨率有限以及命中的物理“接近度”,将命中分配给粒子径迹的模糊性也会增加。因此,带电粒子径迹的重建将成为正确解释 HL-LHC 数据的主要挑战。目前使用的大多数方法都基于卡尔曼滤波器,这些滤波器被证明是稳健的,并提供良好的物理性能。但是,它们的扩展性预计会比二次方差。设计一种能够在命中级别减少组合背景的算法,将为卡尔曼滤波器提供更“干净”的初始种子,从而大大减少总处理时间。量子计算机的显着特征之一是能够同时评估大量状态,使其成为在大型参数空间中进行搜索的理想工具。事实上,不同的研发计划正在探索量子跟踪算法如何利用这些功能。在本文中,我们介绍了我们在实现基于量子的轨迹查找算法方面的工作,该算法旨在减少初始播种阶段的组合背景。我们使用为 kaggle TrackML 挑战设计的公开数据集。
许多基于机器学习的轴突追踪方法依赖于带有分割标签的图像数据集。这需要领域专家的手动注释,这需要大量劳动力,并且不适用于以细胞或亚细胞分辨率对半球或整个脑组织进行大规模脑映射。此外,保留轴突结构拓扑对于理解神经连接和大脑功能至关重要。自监督学习 (SSL) 是一种机器学习框架,允许模型在未注释的数据上学习辅助任务,以帮助完成监督目标任务。在这项工作中,我们提出了一种新颖的 SSL 辅助任务,即为面向拓扑的轴突分割和中心线检测的目标任务重建边缘检测器。我们使用小鼠大脑数据集对三个不同的 SSL 任务进行了 3D U-Nets 预训练:我们提出的任务、预测排列切片的顺序和玩魔方。然后,我们在不同的小鼠大脑数据集上评估了这些 U-Nets 和基线模型。在所有实验中,针对我们提出的任务进行预训练的 U-Net 分别将基线的分割、拓扑保留和中心线检测提高了 5.03%、4.65% 和 5.41%。相比之下,切片排列和魔方预训练的 U-Net 并没有比基线有持续的改进。
• 根据门的角度参数旋转希尔伯特空间中的输入状态 • 产生量子比特之间的纠缠 • 测量最终状态 • 训练 PQC 参数以最小化全局损失函数
从任意观点以及适应不断变化的拓扑结构的表面重构。涉及人类或机器人相互作用与物体的场景需要动态适应分裂,合并或变形的表面。热热,下游应用,例如视觉效果和无标记运动捕获,从不依赖模板的情况下跟踪持久区域的能力显着。因此,方法必须有效地处理这些拓扑更改,以确保高质量的渲染和准确的重建,同时还要维护对现有表面的同意跟踪。经典方法主要依赖于网格和tex曲线图,这些图提供了合理的外观,但重大取决于网格分辨率。他们常常无法准确地确定细节和观察依赖性效果。al-尽管这些网格表示可以进行一定程度的跟踪,但它们努力处理重大的拓扑变化,需要新的关键帧以适应ma-jor变换。神经辐射场的出现(NERF)[28]在静态[1,46]和dy-namic场景[17,30]的外观和新型综合方面有了显着改善。使用Marting Cubes [37,44]可以从隐式签名的距离功能(SDF)得出表面,但除非使用了不足的模板,否则它们缺乏一致的跟踪。最近,出现了3D高斯脱落(3DGS)[20],具有明确的纹理代表,在外观上与NERF竞争,同时实现了更有效的效果。这些高斯人与网格面一起移动,以表示移动和变形的对象。其明确表示有助于跟踪,并为此开发了几种技术[26,50]。然而,准确的动态表面重建仍然是一个挑战,并且在现有表面的跟踪与引入新的表面保持平衡被证明很困难。为了应对这些挑战,我们提出了GSTAR,该方法能够重建光真逼真的外观和准确的表面几何形状,并随着拓扑变化而保持一致的跟踪。GSTAR利用多视图盖,并将网眼与绑定的高斯人结合在一起,与高斯表面相结合。当新的表面变得可见时,新的高斯人会产生,并且网格拓扑更新。适应性网格提供了时间一致,准确的几何形状,而高斯人则带来了逼真的外观。这个问题很困难,因为总会有一个折扣。可以通过固定的托架或模板[24,50]更轻松地跟踪的方法倾向于在新的姿势或变形下降低外观和几何形状的质量。相反,过度拟合静态场景的方法[8,14,16]缺乏时间一致性或错过新的框架详细信息。GSTAR通过尽可能多地跟踪面孔来解决这一权衡