Loading...
机构名称:
¥ 1.0

摘要:准确确定粒子径迹重建参数将成为高亮度大型强子对撞机 (HL-LHC) 实验面临的主要挑战。HL-LHC 同时发生的碰撞数量预计会增加,探测器占用率也会随之提高,这将使径迹重建算法对时间和计算资源的要求极高。命中次数的增加将增加径迹重建算法的复杂性。此外,由于探测器的分辨率有限以及命中的物理“接近度”,将命中分配给粒子径迹的模糊性也会增加。因此,带电粒子径迹的重建将成为正确解释 HL-LHC 数据的主要挑战。目前使用的大多数方法都基于卡尔曼滤波器,这些滤波器被证明是稳健的,并提供良好的物理性能。但是,它们的扩展性预计会比二次方差。设计一种能够在命中级别减少组合背景的算法,将为卡尔曼滤波器提供更“干净”的初始种子,从而大大减少总处理时间。量子计算机的显着特征之一是能够同时评估大量状态,使其成为在大型参数空间中进行搜索的理想工具。事实上,不同的研发计划正在探索量子跟踪算法如何利用这些功能。在本文中,我们介绍了我们在实现基于量子的轨迹查找算法方面的工作,该算法旨在减少初始播种阶段的组合背景。我们使用为 kaggle TrackML 挑战设计的公开数据集。

利用量子算法重建粒子轨迹

利用量子算法重建粒子轨迹PDF文件第1页

利用量子算法重建粒子轨迹PDF文件第2页

利用量子算法重建粒子轨迹PDF文件第3页

利用量子算法重建粒子轨迹PDF文件第4页

利用量子算法重建粒子轨迹PDF文件第5页

相关文件推荐

2020 年
¥7.0
2024 年
¥1.0
2024 年
¥17.0