H ∞ 滤波器针对的是噪声过程统计数据不确定的情况,此时我们的目标是最小化最坏情况而不是估计误差的方差 [ 3 , 26 ]。该滤波器限制了将扰动映射到估计误差的传递函数的 H ∞ 范数。然而,在瞬态操作中,会失去所需的 H ∞ 性能,并且滤波器可能会发散,除非每次迭代中都有一些(通常是限制性的)正性条件成立。在集值估计中,扰动向量通过有界集(如椭球)建模 [ 4 , 22 ]。在该框架中,我们试图围绕与观测值和外生扰动椭球一致的状态估计构建最小椭球。然而,由此产生的稳健滤波器会忽略任何分布信息,因此倾向于过于保守。 [19] 首次研究了一种对更一般形式的(基于集合的)模型不确定性具有鲁棒性的滤波器。该滤波器以迭代方式最小化标准状态空间模型附近所有模型的最坏情况均方误差。虽然该滤波器在面对较大不确定性时表现良好,但在较小不确定性下可能过于保守。[25] 提出了一种广义卡尔曼滤波器,它可以解决这个缺点,在标准性能和最坏情况性能之间取得平衡。通过最小化矩生成函数而不是估计误差平方的均值,可以得到风险敏感的卡尔曼滤波器 [24]。这种风险敏感的卡尔曼滤波器等同于 [12] 中提出的分布鲁棒滤波器,它最小化标准分布周围的 Kullback-Leibler (KL) 球中所有联合状态-输出分布的最坏情况均方误差。 [27] 研究了更一般的 τ -散度球的扩展。
人类的视野比在分布外情景下表现出的鲁棒性更高。它已经通过逐个合成的分析来猜想这种鲁棒性益处。我们的论文通过通过渲染和能力算法在神经特征上进行近似分析,以一致的方式制定三重视觉任务。在这项工作中,我们引入了神经丝线可变形的网格(NTDM),该网格涉及具有变形几何形状的OBJECT模型,该模型允许对摄像机参数和对象几何形状进行优化。可变形的网格被参数化为神经场,并被全表面神经纹理图所覆盖,该图被训练以具有空间歧视性。在推断过程中,我们使用可区分渲染来最大程度地重建目标特征映射,从而提取测试图像的特征图,然后对模型的3D姿势和形状参数进行优化。我们表明,在现实世界图像,甚至在挑战分布外情景(例如闭塞和主要转变)上进行评估时,我们的分析比传统的神经网络更强大。在经常性能测试测试时,我们的算法与标准算法具有竞争力。
描述 沉箱是一种安全、防水的舱室,通常用于水下施工。通过添加压缩空气使舱室防水。战略环境研究与发展计划 (SERDP) 项目 MR-2648“建立坚固的沉箱结构以抵抗水下未爆炸弹药就地爆炸的影响”研究了沉箱作为防爆盾的使用。计算机模拟发现,SERDP 团队开发的坚固沉箱结构 (RCS) 模型能够显著降低水下爆炸的影响。
通过将自然语言纳入附加指导来实现单眼深度估计的最新进展。尽管产生了令人印象深刻的结果,但语言先验的影响,尤其是在发生和鲁棒性方面,仍未得到探索。在此过程中,我们通过量化此之前的影响来解决这一差距,并引入方法以在各种环境中基准其有效性。我们生成“低级”句子,传达以对象为中心的三维空间关系,将它们纳入其他语言先验,并评估其对深度估计的下游影响。我们的关键发现是,当前语言引导的深度估计仅通过场景级别的描述和违反直觉的效果最佳地发挥作用。尽管利用了其他数据,但这些方法对于对抗性攻击并随着分配变化的增加而对性攻击和绩效下降并不强大。fi-nally,为了为未来的研究提供基础,我们识别出失败点,并提供见解以更好地理解这些缺点。使用语言进行深度估算的越来越多的方法,我们的发现突出了需要仔细考虑在现实世界中有效部署的机会和陷阱。1
最近,密集的潜在变量模型已显示出令人鼓舞的结果,但是它们的分布式和潜在的代码使它们降低了易于解释,并且对噪声的影响较低。另一方面,稀疏表示更为简约,提供了更好的解释性和噪声稳健性,但是由于涉及的复杂性和计算成本,很难实现稀疏性。在此过程中,我们提出了一种新颖的无监督学习方法,以利用逐渐稀疏的尖峰和平板分布作为我们的先验,以在发电机模型的潜在空间上强化稀疏性。我们的模型由自上而下的发电网络组成,该网络将潜在变量映射到观测值。我们使用最大似然采样来推断发电机后方向的潜在变量,并且推理阶段的尖峰和平板正则化可以通过将非信息性潜在维度推动到零来引起稀疏性。我们的实验表明,学到的稀疏潜在表示保留了大多数信息,我们的模型可以学习解开的语义,并赋予潜在代码的解释性,并增强分类和denosing任务的鲁棒性。
对抗训练(AT)是提高深度神经网络鲁棒性的最常用机制。最近,一种针对中间层的新型对抗攻击利用了对抗训练网络的额外脆弱性,输出错误的预测。这一结果说明对抗训练中对抗扰动的搜索空间不足。为了阐明中间层攻击有效的原因,我们将前向传播解释为聚类效应,表征神经网络对于与训练集具有相同标签的样本的中间层表示相似,并通过相应的信息瓶颈理论从理论上证明了聚类效应的存在。随后我们观察到中间层攻击违反了 AT 训练模型的聚类效应。受这些重要观察的启发,我们提出了一种正则化方法来扩展训练过程中的扰动搜索空间,称为充分对抗训练(SAT)。我们通过严格的数学证明给出了经过验证的神经网络鲁棒性界限。实验评估表明,SAT 在防御针对输出层和中间层的对抗性攻击方面优于其他最先进的 AT 机制。我们的代码和附录可以在 https://github.com/clustering-effect/SAT 找到。
摘要 - 在具有挑战性的环境中需要可靠的定位,需要现代机器人系统才能运行。基于激光雷达的局部化方法,例如迭代最接近的点(ICP)算法,可能会在几何无知的环境中遭受损害,这些环境已知,这些环境已知会导致点云登记性能恶化,并沿弱受约束方向推动散落的优化。为了克服这个问题,这项工作提出了i)稳健的可局部性检测模块,ii)局限性感知到的受限的ICP优化模块,该模块将其与统一的局限性检测模块相结合。通过利用扫描和地图之间的对应关系来实现所提出的可区分性检测,以分析优化的主要方向的对齐强度,作为其细粒度的LIDAR固定性分析的一部分。在第二部分中,然后将此可本质性分析集成到扫描到映射点云注册中,以通过执行受控更新或离开优化的脱位方向来生成无漂移姿势更新。所提出的方法经过彻底评估并将其与模拟和现实世界实验1中的最新方法进行了比较,证明了激光挑战环境的性能和可靠性提高。在所有实验中,所提出的框架表明没有环境特异性参数调整的准确且可推广的可局部性检测和可靠的姿势估计。
与基于卷积神经网络(CNN)相比,我们研究了基于变压器的行人检测模型较低性能的原因。CNN模型会产生密集的行人建议,单独完善每个建议,然后对其进行非最大抑制(NMS)的跟进,以产生稀疏的预测。在争论中,变压器模型每个地面真相(GT)行人盒选择一个建议,然后从中选择了正面的正态。所有其他建议,其中许多与选定的建议高度相似,都通过了负梯度。尽管这导致了稀疏的预测,从而消除了NM的需求,但在许多类似的建议中,任意选择,有效的训练和较低的行人检测准确性。为了减轻问题,我们建议基于Min-Cost-Flow的配方,而不是常用的Kuhn-Munkres匹配算法,并纳入了诸如每个地面真相盒的约束,并且与一个建议的提案相匹配,并且许多同样好的建议可以与单个地面真相盒相匹配。我们提出了基于匹配算法的第一个基于变压器的行人检测模型。广泛的实验表明,我们的方法达到了3个失误率(较低)3。7 /17。4 /21。8/8。3/2。0在Eurocity / tju-traffic / tju-校园 /城市专家 /加州理工学院数据集中,而4个。7/18。7/24。8/8。5/3。 1通过当前的sota。 代码可从https://ajayshastry08.github.io/flow_ matcher 获得。5/3。1通过当前的sota。代码可从https://ajayshastry08.github.io/flow_ matcher