Type Name Description Property acceleromenter_sample Last 3-axial accelerometer measurement Property accelerometer_vector Last 3-axial accelerometer vector of samples Property accelerometer_threshold Accelerometer threshold for event detection Action start/stop Activate/deactivate the sensor monitoring Event onOverThresholdEvent Trigger the event when the accelerometer sample is greater than the threshold value Table 1.与每个SHM传感器相关的TD子集(机器可信学格式)
Rizzo 博士于 1998 年获得意大利巴勒莫大学航空工程学硕士学位(相当于硕士)。在意大利陆军工程兵团服役后,Rizzo 博士移居美国,在加州大学圣地亚哥分校获得结构工程硕士(2002 年)和博士学位(2004 年)。2006 年 9 月,他成为匹兹堡大学 CEE 系的助理教授。他于 2012 年晋升为终身副教授,并于 2018 年晋升为正教授。Rizzo 博士的研究兴趣是使用超声波、声发射、孤立波、热成像和机电阻抗等方法进行无损评估和结构健康监测 (SHM)。他的研究得到了宾夕法尼亚州交通部、国家科学基金会、联邦铁路管理局、美国国家科学院和美国无损检测学会 (ASNT) 的支持。Rizzo 博士曾获得 ASNT 颁发的 2002 年奖学金、2007 年教师资助奖、2009 年、2015 年和 2019 年奖学金研究奖以及 2013 年和 2017 年杰出论文奖。Rizzo 博士是全球第一位同时获得阿肯巴赫奖章(2012 年)和 SHM 年度人物奖(2015 年)的人。他还获得了 2016 年匹兹堡大学校长杰出研究青年学者奖。迄今为止,他发表了 115 篇参考论文、5 本会议论文集、8 个书籍章节、200 多篇会议论文集和报告以及 2 项专利。
•汽车应用:UC1专注于开发空气动力屏蔽,而UC2靶向备用轮子井,均旨在通过轻量级结构来提高车辆效率。此外,UC7还引入了用于储能应用的先进的H2存储系统,而UC8集中于用于结构健康监测(SHM)的多参数传感器(SHM),以增强车辆的寿命和安全性,UC9专注于设计用于使用金属涂料的自润滑金属零件(WS2/MOS2/MOS2/MOS2)和喷涂润滑的设计。•水处理创新:UC3和UC4应对至关重要的环境挑战,利用基于石墨烯的材料在水脱盐和油/水分离中进行纳米滤过。这些解决方案旨在提高水处理过程的效率,促进资源保护和可持续性。•航空航天的进步:UC5和UC6将石墨烯增强的材料带到航空航天中,重点关注用于尾随边缘组件的超音速飞机和闪电罢工保护(LSP)系统的前沿。这些创新有望提高耐用性并降低材料磨损,从而延长航空航天组件的生命周期。•能源部门解决方案:Giance还使用UC10(H2生成的催化剂)和UC11(基于吸附剂的H2存储系统)探索氢(H2)技术。这些创新支持欧盟的氢策略,为各种工业应用提供了更清洁的能源解决方案。
芒加拉亚坦大学 - 阿里加尔理工硕士生 芒加拉亚坦大学 - 阿里加尔土木工程系助理教授 - 202146 摘要:本文探讨了导致结构破坏的关键因素,特别强调了水分侵入、土壤不稳定和设计缺陷。评估基于七个案例研究,说明了这些方面如何相互作用以损害结构完整性。与水分有关的问题,例如集水坑泄漏和排水不充分,会严重影响地基稳定性并加速材料劣化。土壤动力学,包括弱土剖面和不均匀沉降,加剧了脆弱性,特别是在倾斜区域。该研究强调了主动边坡管理策略的重要性,例如土工格栅加固和铺草皮。此外,该研究还强调了无损检测 (NDT) 和结构健康监测 (SHM) 系统在结构问题升级为故障之前识别它们的有效性。研究结果强调了在设计阶段结合岩土工程评估和高级诊断工具以增强弹性的必要性。本文提倡修订建筑法规、改进施工方法和开发创新材料,以提高长期结构性能并降低未来发生故障的风险。研究结果为结构工程领域的持续讨论做出了贡献,提供了切实可行的建议,以提高基础设施的安全性和可持续性。关键词:结构故障、水分侵入、土壤不稳定、设计缺陷、无损检测 (NDT)、结构健康监测 (SHM)、岩土评估、边坡稳定、防水系统、施工实践、基础设施弹性、结构诊断、地基稳定性、先进材料、建筑规范。
ADMG 424, ADMG 471, ADMG 479, ANTH 458, ART 476, ASP 485, AST 401, ATM 487, AVM 450, AVP 470, BIOL 487, BUAN 406, CAH 400, CAH 489, CDFS 419, CHEM 488, CMGT 481 & 495A & 495B, CMGT 481B, COM 489, CRBW 487, CS 481, CS 489, CTE 405, DHC 310, EDCS 492, EDEC 432, EDSE 499, EET 487 & 487LAB & EET 488 & 488LAB & 489, EFC 480, ELEM 471, ENG 488, ENG 489, ENST 487, ENTP 489, ETSC 485, ETSC 490, EXSC 495B, EXCS 495D, FILM 489, GEOG 489, GEOL 489, GEOL 493, HIST 481, HTE 419, IDS 489, IT 470, IT 482, IT 483, IT 486, IT 487, LAJ 489, MATH 467, MATH 468, MATH 489A, MATH 499D, MATH 499S, MET 489A & 489B & 489C, MGT 489, MUS 300, MUS 400, MUS 420, MUS 495, NUTR 445, PESH 401, PESH 438, PFP 480, PHIL 495, PHIL 497, PHYS 495, POSC 489, PSY 489, PUBH 488, RELS 495,RELS 497,RMT 467,SCED 422,SCM 480,SHM 485,SHM 490,SOC 489,STP 406,TH 495,WLC 487
摘要:添加剂制造(AM)缺陷在纤维增强的热塑性复合材料(FRTPC)中面临着重大挑战,直接影响其结构和非结构性表现。通过基于材料挤出的AM产生的结构,特别是融合的细丝制造(FFF),逐层沉积可以引入孔隙率(在某些情况下最高10-15%),分层,空隙,纤维错位和层次之间的不完整融合。这些缺陷会损害机械性能,从而导致抗拉强度最多降低30%,在某些情况下,疲劳寿命高达20%,严重降低了该复合材料的整体性能和结构完整性。常规的非破坏性测试(NDT)技术通常难以有效地检测此类多尺度缺陷,尤其是当解决方案,穿透深度或物质异质性构成挑战时。本综述对FRTPC中的制造缺陷进行了严格的研究,根据形态,位置和大小对FFF诱导的缺陷进行了分类。讨论了能够检测到小于10 µm的空隙,以及与自感应纤维集成的结构健康监测系统(SHM)系统的高级NDT技术。与传统的NDT技术相比,还突出了机器学习算法(ML)算法在增强NDT方法的灵敏度和可靠性中的作用,这表明ML积分可以提高缺陷检测高达25–30%。最后,研究了配备连续纤维的自我报告FRTPC的潜力,用于实时缺陷检测和原位SHM。通过将ML增强的NDT与自我报告的FRTPC相结合,可以显着提高缺陷检测的准确性和效率,从而通过启用更可靠的,缺陷,更可靠的,最低的FRTPC组件来促进AM在航空航天应用中的广泛采用。
摘要 本章概述了航空航天工业对结构健康监测 (SHM) 系统运行的要求。这些要求基于现有标准和指南,包括对系统物理组件(如传感器、数据采集系统和连接器)的要求及其功能要求(如可靠性、置信度和检测概率)。由于机载和地面组件具有不同的功能要求,因此重点关注机载和地面组件。系统可靠性的一个重要因素是环境和操作负载对诊断可靠性的影响,从而影响预测。介绍了在不同操作条件下测试系统可靠性的推荐指南。然后,本章最终报告了基于不同传感器技术和不同优化算法的最佳传感器数量和位置方法。
A/C 飞机 ARMS 飞机记录和监控系统 CBM 基于条件的维护 CI 条件指示器 CG 重心 COTS 商用现货 CVR 驾驶舱语音记录器 DAU 数据采集单元 DSC 数字源收集器 EF 欧洲战斗机 EVM 发动机振动监控 FAA 美国联邦航空管理局 FDR 飞行数据记录器 HUMS 健康和使用监控系统 IAS 指示空速 IGB 中间齿轮箱 ILS 综合后勤支援 IPS 英寸/秒 IVHM 综合振动健康监控 MARMS 模块化飞机记录和监控系统 MGB 主齿轮箱 MSR 机械应变记录器 RMS 均方根 RTB 旋翼轨迹和平衡 SHM 结构健康监控
无损检测性能要求的演变是由质量要求的发展决定的。因此,这些技术的发展历史 [1] 以检查目标的演变为标志:20 世纪 60 年代的“零缺陷”目标在 20 世纪 70 年代被检测“关键缺陷”的目标所取代,随后在 20 世纪 70 年代至 80 年代又被提高缺陷可检测性的目标所取代。应该指出的是,无损检测 (NDE) 一词就是为这种缺陷表征的演变而发展起来的。20 世纪 80 年代至 90 年代,目标是对易老化的系统和结构进行持续和改进的无损检测。20 世纪 90 年代至 21 世纪,出现了对大面积检查的需求,需要通过结构健康监测 (SHM) 持续监测某些结构的健康状况,同时降低检查和其他评估的成本。
在过去几十年中,跟踪结构损害并预测其演变一直是一个永久的工程问题。这是强化研究工作的主题,既有实验性和数值进步。一方面,如今具有嵌入式微传感器阵列的板载传感技术可以准确地进行机械应变的原位测量,因此提供了有关内部损伤状态的非常丰富的实验信息(Azam,2014)。尤其是,使用标准光纤与雷利反向散射结合的技术(Sanborn等,2011)非常有吸引力,因为它可以通过无与伦比的空间分辨率对应变场进行实时分布式表征(每米的数千个测量值)。这种技术已经在几种应用中使用,并且越来越多地设想了工业家进行结构性健康监测(SHM)(Di Sante,2015年)。
