电子邮件地址:raja23@iitk.ac.in(rajashekhar v s),gowdhampg@iitk.ac.ac.in(gowdham prabhakar)
Subject Code Course Name Name of the Faculty 19BT501 Bioprocess principles Dr. R. Karthikeyan /BT - 19BTS02 Molecular biology Dr. M. L. Stephen Raj /BT 19BT503 Mass transfer operation Dr. K. Sriram /BT 19BTCO1 Bioremediation technology Mr. R.Vigneshwaran /BT 19EEP04Soft computing techniques Dr. K. Banumalar /eee Open选修(OE)19ITP02数据科学使用R S. Rajesh博士/IT -19BTPO1生物传感器技术A.P. A.P.sasikumar /bt 19eea04绿色能源dr.M.Muhaidheen /eee 19eca04 | MATLAB工程师S. Selva Nithiyananthan / ECE Allied 19CSA03数据库选举简介(AE)M.S.Bhuvaneswari /CSE | R. Saravana Sathiya Prabhahar博士 /Mech J. Nagarajan博士 /Mech L. Prasika夫人 /MCA < /div < /div>
回想起来,早在 20 世纪 60 年代或 70 年代,人们就预测到微量放射性可能导致计算机电路出现软故障。十年来,电子元件变得越来越小,电压越来越低,电荷包中指示零或一的电子越来越少。随着 1977 年 16Kb 内存芯片的推出,内存单元中的存储电荷已从 4Kb LSI(大规模集成电路)电路的约 4M 个电子减少到约 1M 个电子。最令人不安的放射性衰变粒子是阿尔法粒子,这种衰变产物主要来自铀或钍原子的衰变链。阿尔法粒子可以在半导体中导致 1M 个电子在几微米的路径长度内突然爆发。这是新的 16Kb FET 内存单元的尺寸。这是第一次,内存单元信息量子能够被放射性衰变产物改变。
软机器人的特征是它们的机械依从性,使其非常适合各种生物启发的应用。但是,需要使用软传感器来维护其在部署过程中的灵活性的挑战,从而可以提高其移动性,能源效率和空间适应性。通过模拟人类感官的结构,策略和工作原理,软机器人可以检测刺激,而无需直接与柔软的无触摸传感器和触觉刺激接触。这导致了软机器人技术领域中值得注意的进步。尽管如此,柔软,无触摸的传感器提供了非侵入性传感和抓地力的优势,而没有与物理接触相关的缺点。因此,近年来,柔软无触摸传感器的普及促进了与人类,其他机器人和周围环境的直观且安全的互动。本评论探讨了无触摸传感和软机器人技术的新兴汇合处,概述了可部署软机器人的路线图,以实现人级的灵活性。