1 简介 1 1.1 概述 1 1.1.1 软错误的证据 2 1.1.2 软错误的类型 3 1.1.3 减轻软错误影响的经济有效的解决方案 4 1.2 故障 6 1.3 错误 7 1.4 指标 9 1.5 可靠性模型 11 1.5.1 可靠性 12 1.5.2 可用性 13 1.5.3 其他模型 13 1.6 互补金属氧化物半导体技术中的永久性故障 14 1.6.1 金属故障模式 15 1.6.2 栅极氧化物故障模式 17 1.7 CMOS 晶体管中的辐射诱发瞬态故障 20 1.7.1 阿尔法粒子 20 1.7.2 中子 21 1.7.3 阿尔法粒子和中子与硅晶体的相互作用 26 1.8 阿尔法粒子和中子撞击的架构故障模型 30 1.9 静默数据损坏和检测到的不可恢复错误 32 1.9.1 基本定义:SDC 和 DUE 32 1.9.2 SDC 和 DUE 预算 34
在亚洲理工学院 (AIT) 的拉拔试验实验室,使用红褐色风化曼谷粘土和粘土质砾石、红土残积土作为回填材料,对不同钢筋直径和孔径大小的焊接钢丝网钢筋进行了拉拔试验。使用风化粘土回填物进行了总共 87 次拉拔试验,回填物以 95% 标准普氏密度压实,并在 2 种不同的压实水分含量(最佳干侧和湿侧)下进行。测试的正常压力范围为 1 至 13 tsfri。加固垫由 1/4" 和 3/8" 直径的钢筋组成,焊接在一起形成 6" x 9"、6" x 12" 和 6" x 18" 的孔径。同样,使用 3 种不同含水量(干、最佳和湿)的红土残渣土进行了 47 次拔出试验,压实密度分别为 95% 和 100%。测试在 0.2 至 1.8 tsm 的较低压力下进行。使用的加固垫为 1/4" 和 1/2" 直径的钢筋,网格尺寸为 6"x6" 和 6"x9"。在所有进行的测试中,土壤-加固相互作用表明横向构件对总拔出阻力的被动阻力占主导地位。发现纵向构件的摩擦阻力占垫子总拔出阻力的 3% 至 5%。此外,由于钢筋的不可延展性,钢筋的屈服强度仅在 1 至 4 毫米位移的低应变下发生。研究还发现,直径较小的钢筋通过产生更高的拔出能力,可以有效增强被动抵抗的全面动员。在所有使用的网格尺寸中,6"x9" 网格几何形状似乎是最有效的。
*请参阅《乳房重建》的医学政策,以获取有关乳房切除术后乳房重建程序中使用的皮肤和软组织替代物的信息。注意:有关特定产品信息,请参阅临床证据部分。定义全厚度热燃烧(三度燃烧):烧伤,并破坏了皮肤的所有层。这些燃烧涉及所有表皮和真皮层,其二层层的参与度变化(Gomez and Cancio,2007)。部分厚度热燃烧(二级燃烧):涉及表皮和仅一部分真皮的燃烧。深层厚度的热燃烧涉及表皮和真皮的大部分部分,几乎没有完整的皮肤附属物和神经末端(Gomez and Cancio,2007年)。适用的代码仅供参考,以下程序和/或诊断代码提供了以下列表,并且可能不包含在内。在本策略中列出代码并不意味着代码所描述的服务是涵盖或未覆盖的健康服务。卫生服务的福利覆盖范围由联邦,州或合同要求以及可能需要特定服务覆盖的适用法律确定。纳入代码并不意味着要偿还或保证索赔付款的任何权利。其他政策和准则可能适用。
前言 该标准由孟加拉国标准和测试机构于 ……………………………………………… 通过,此前,面包和糖果产品分委员会最终确定的草案已获农业和食品产品分委员会的批准。 该国市场上销售的软糖种类繁多。软糖的质量取决于其关键成分,即保湿剂的量以及糖的种类和比例。为了确保产品符合安全和质量要求,有必要制定此标准,以保护主要由儿童组成的消费者。 该标准于 1982 年首次发布,随后于 2001 年修订。之前,该标准名为“BDS 1000 太妃糖”。在审查该标准时,委员会决定将糖类软糖(包括太妃糖、明胶糖果和果胶糖果)纳入一个标准范围内,因为这些产品的基本要求是共同的。因此,委员会同意将该标准更新为单一的、全面的、用户友好的标准,并将标题更改为“BDS 1000 软糖”,以符合国际命名法。此版本的主要修改如下:
Luca Tubiana 1 , 2 , ∗ , Gareth P. Alexander 3 , Agnese Barbensi 4 , Dorothy Buck 5 , Julyan HE Cartwright 6 , 7 , Mateusz Chwastyk 8 , Marek Cieplak 8 , Ivan Coluzza 9 , Simon Čopar 10 , David J. Craik 11 , Marco Di Stefano 12 , Ralf Everaers 13 , Patrícia FN Faísca 14 , 15 , Franco Ferrari 16 , Achille Giacometti 17 , 18 , Dimos Goundaroulis 9 , 19 , Ellinor Haglund 20 , Ya-Ming Hou 21 , Nevena Ilieva 22 , Sophie E. Jackson 23 , Aleksandre Japaridze 24 , Noam Kaplan 25,Alexander R. Klotz 26,Hongbin Li 27,Christos N. Likos 28,Emanuele Locatelli 28,29,30,TeresaLópez-León31,Thomas Machon 32,Cristian Micheletti 33,Davide Michieletto 34,34,35,35,Antti niiem 33,33 39,Francesco Nitti 40,Enzo Orlandini 29,30,Samuela Pasquali 42,Agata P. Perlinska 39,Rudolf Podgornik 43,44,45,Raffaello Potestio 1,2拉夫尼克 10,48, 伦佐·里卡 49,50, 克里斯蒂安·M·罗沃 51,52, 安杰洛·罗萨 33, 扬·斯姆雷克 28, 安东·苏斯洛夫 53, 安德烈·斯塔西亚克 54,55, 达尼埃莱·斯蒂尔 40,41, 乔安娜·苏乌科夫斯卡 39, 皮奥特·苏乌科夫斯基 56, 德威特·L·萨姆纳斯 57, 卡斯滕·斯瓦内博格 58, 皮奥特·希姆扎克 56, 托马斯·塔伦齐 59, 鲁伊·特拉瓦索 60, 彼得·维尔瑙 61, 迪米特里斯·弗拉索普洛斯 62,63, 普里莫日·齐赫尔 10,48, 斯洛博丹·尤默 10,48
能够实时记录生理信号并提供适当治疗的高性能可穿戴和植入设备在个性化医疗改革中发挥着关键作用。然而,刚性无机设备与柔软有机人体组织之间的机械和生化不匹配会造成严重问题,包括皮肤刺激、组织损伤、信噪比降低以及使用时间有限。因此,人们投入了大量研究精力,通过使用灵活、可拉伸的设备设计和软材料来克服这些问题。在这里,我们总结了软生物电子学的最新代表性研究和技术进展,包括可变形和可拉伸的设备设计、各种类型的软电子材料以及表面涂层和处理方法。我们还重点介绍了这些策略在新兴软可穿戴和植入设备中的应用。我们最后总结了目前的一些局限性,并对这一蓬勃发展的领域的未来前景进行了展望。
软机器人技术是机器人技术的一个特定子领域,涉及使用与生物体中类似的高柔顺性材料构建机器人。软机器人技术很大程度上借鉴了生物体移动和适应周围环境的方式。与用刚性材料制成的机器人相比,软机器人可以提高完成任务的灵活性和适应性,并在与人类一起工作时提高安全性。这些特性使其在医学和制造业领域具有潜在的用途。为了了解软机器人技术在研究中的普遍性,截至 2021 年 4 月,在 Web of Science 数据库中对关键词“软机器人”进行简单搜索,结果超过 6.6k 个条目,自 2010 年代初开始激增,并且仍然受到越来越多的关注(图 1)。本书的目的是全面概述软机器人技术的广泛领域以及化学工程如何参与其中。读者将了解软机器人的基础知识,并了解软机器人在不同工业和研究领域最突出的应用。重要的是,本书还将强调在大型产品中实施软机器人所面临的挑战和问题。全书分为七章。第一章讨论软机器人的主要原理,特别是软微机器人。Bernasconi 博士(第 1 章)介绍了近年来实施的新功能和驱动策略。本章介绍了使用软物质制造的微型机器人的材料、制造技术、驱动策略和应用,重点关注一些特殊类型的材料,如生物实体和硬软混合物。Costa Angeli 博士(第 2 章)概述了可用于软机器人的打印技术和可打印材料。本文还重点介绍了这些技术在工业中的应用所需要解决的主要挑战。 Sacchetti 教授(第 3 章)进一步阐述了该领域中金属有机骨架 (MOF)。金属中心和有机骨架之间的配位产生了复杂的组装体,这些组装体可以从一维结构发展为配位聚合物。本章将简要说明 MOF 在化学物质传感中的应用。MOF 与
PowerCu Soft 键合带是 Heraeus 下一代功率器件的首选材料,可使模块工作温度高于 250°C。与标准铝键合带相比,PowerCu Soft 键合带具有出色的导电性、更高的熔断电流值和非凡的机械性能。它非常适合用于高工作温度和最高稳健性挑战的先进封装模块。由于铝和铜的机械性能不同,处理 PowerCu Soft 键合带需要更高的键合力和特殊的耗材。稳定且可控的键合工艺需要坚固的正面铜金属化。Heraeus Die Top System (DTS) 可提供完美的匹配解决方案。
__________________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________________ <__________________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________________ <
抽象的本体感受是检测运动神经元的肢体姿势的“第六含义”。它需要在肌肉骨骼系统和感觉受体之间进行自然整合,这在现代机器人中具有挑战性,旨在以低成本的机械设计和算法计算,以轻巧,适应性和敏感设计。在这里,我们介绍了软性多面体网络,具有对物理相互作用的嵌入式视觉,能够通过学习动力学特征来适应性动力学和粘弹性本体感受。此设计使被动适应全态相互作用,这是通过嵌入内部的微型高速运动跟踪系统在视觉上捕获的。结果表明,软网络可以在动态相互作用中推断出具有0.25/0.24/0.35 N和0.025/0.025/0.025/0.025/0.025/0.034/0.006 nm的实时6D力和扭矩。我们还通过添加蠕变和放松修饰者来鉴定预测结果,在静态适应过程中将粘弹性纳入静态适应性。提出的软网络结合了设计,全型适应性和本体感受的简单性,具有高精度,使其成为机器人技术的多功能解决方案,以低材料成本,超过一百万个用于敏感和竞争性的和触摸基于触摸的几何形状重构等任务的循环超过一百万个。这项研究为自适应抓握,软操纵和人类机器人相互作用的软机器人提供了新的见解。