为了实现现实世界的功能,机器人必须具备执行决策计算的能力。然而,软机器人可以伸展,因此需要刚性计算机以外的解决方案。目前,将计算能力嵌入软机器人的例子包括在机器人上附加刚性印刷电路板、集成软逻辑门以及利用材料响应进行材料嵌入式计算。这些方法虽然很有前景,但也引入了刚性、系绳或低逻辑门密度等限制。可伸缩电子领域一直致力于解决这些挑战,但将单板计算机、微控制器和其他复杂电路直接集成到软机器人中的完整管道仍然难以捉摸。我们提出了一种通用方法,将任何复杂的双层电路转换成柔软的可伸缩形式。这使得无需简化设计即可创建可伸缩的单板微控制器(包括 Arduino)和其他商用电路(包括 Spark-Fun 电路)。为了证明该方法的实用性,我们将高度可拉伸(应变 > 300%)的 Arduino Pro Minis 嵌入到多个软机器人体内。这利用了原本惰性的结构材料,实现了可拉伸电子场的承诺,即在主动使用过程中将最先进的计算能力集成到坚固的可拉伸系统中。
人工智能在医疗保健中的应用比以往任何时候都更快,因为深度学习和计算的快速发展。曾经相信,关于医疗保健系统的选择仅应由医生和其他医疗专业人员做出。机器学习的出现扭转了这一趋势,增加了对创建医疗保健支持系统的算法的依赖。许多人工智能(AI)预测算法已经开发出来,以预测其早期疾病。此外,数据科学也应用于许多其他医疗领域,例如智能预测模型和临床数据摘要。
抽象的磁反应性软材料是软复合材料,将磁性填充剂嵌入软聚合物矩阵中。这些活性材料由于能够在磁场的应用下通过远程和不受束缚的控制实现快速,可编程的形状变化,因此吸引了广泛的研究和工业兴趣。他们将在软机器人/设备,超材料和生物医学设备中具有许多高影响力的潜在应用。具有广泛的功能磁性填充剂,聚合物矩阵和先进的制造技术,可以对材料特性进行编程,以用于集成功能,包括可编程形状变形,基于动态形状变形的机能,对象操纵和组装,远程热量,远程热量产生以及可重新配置电子设备。在这篇评论中,提出了多功能磁性响应式软材料中最先进的发展和未来观点的概述。
抽象软材料机器人独特地适合于以传统的刚性机器人实施例不能以新的方式解决极端环境中的工程挑战。软机器人材料的柔韧性,对脆性断裂的抗性,低导热性,生物稳定性和自我修复功能提出了对特定环境条件有利的新解决方案。在本综述中,我们研究了在各种极端环境中建造和操作软机器人的要求,包括在人体,水下,外太空,搜索和救援地点以及狭窄的空间。我们分析了满足这些要求的软机器人设备的实现,包括执行器和传感器。除了这些设备的结构外,我们还探索了通过设计优化,控制系统及其在教育和商业产品中的未来应用中扩展软机器人使用软机器人的方法。我们进一步讨论了软机器人的当前局限性,以认识到符合性,力量和控制的挑战。考虑到这一点,我们为机器人技术的未来提出了争论,其中混合(刚性和软)结构满足了复杂的环境需求。
从线性粘弹性方案中的流变实验估计。悬浮液在频率范围内未表现出终端松弛0.01-100 rad/s在技术上被认为是玻璃1,5,7,31,37。
上一次SOCTA会议在以下场所成功组织:SOCTA2016:印度斋浦尔的Amity University Rajasthan。(2016年12月28日至30日)SOCTA2017:印度北方邦的Bundelkhand University Jhansi。(2017年12月22日至24日)SOCTA2018:印度旁遮普邦Jalandhar的B R Ambedkar Nit博士。(2018年12月21日至23日)SOCTA2019:印度比哈尔邦巴特纳国家理工学院国家理工学院。(2019年12月27日至29日)SOCTA2020:在虚拟模式下(由于大流行19)。(2020年12月25日至27日)SOCTA2021:印度印度信息技术研究所,印度。(2021年12月17日至19日)SOCTA2022:喜马al尔邦大学Summerhill,印度西姆拉。(2022年12月16日至18日)SOCTA2023:印度印度信息技术研究所UNA,印度。(12月24日至26日,2023年)第9系列,SOCTA2024在印度拉贾斯坦斋浦尔国家理工学院(MNIT)在印度斋浦SOCTA2024是在印度旁遮普邦Jalandhar的B R Ambedkar Nit博士的技术合作中组织的; Shobhit认为大学Meerut和科学,技术,工程与管理(STEM) - 研究学会。会议有5个主题演讲,由来自世界各地的著名院士和从业人员发表。总的来说,在18个口头演讲会议上介绍了12个不同的会议不同主题的技术论文。我们感谢Springer Plc。给我们机会在网络和系统(LNNS)中发表诉讼的机会。我们真诚地感谢您持续的支持,鼓励和信任我们。提交给SOCTA2024的所有论文都经历了同行评审过程,随后进行了修订,然后最终被接受。SOCTA系列成功的荣誉,请参阅我们的导师,主题演讲和邀请演讲者,首席嘉宾,荣誉嘉宾,顾问委员会成员,顾问委员会(国家与国际),计划委员会成员,Springer团队作为出版伙伴(特别是Aninda Bose,特别是Aninda Bose,尤其是执行编辑 - 跨学科应用科学委员会;我们也期待在即将到来的SOCTA系列中获得这种出色的支持。我们很高兴通知您,SOCTA系列中的下一个,即SOCTA 2024计划在印度的Mnit斋浦尔拉贾斯坦邦。期待在SOCTA系列中做出重大贡献……
Mouser电子产品授权分销商单击以查看定价,库存,交付和生命周期信息:Microchip:Apt2x61d120j APT15DQ120BG APT2X100DQ100DQ120J APT75DQ120J APT75DQ120BG APT2X101DQ1201DQ120J APP6JAPT660D120BG
摘要:人工智能 (AI) 被定位为大多数工业领域、社会互动以及许多其他技术优势的基础技术。人工智能正在迅速发展,有望改善我们的业务、保护我们的安全并使我们社会变得更好。与此同时,我们知道会存在一些担忧,其中一些是预料之中的,而许多担忧将随着技术本身的发展而发展。其无处不在的性质和快速的发展速度使传统的治理结构难以实施。但是,有许多“软法”或非法律约束力的工具提供了安全地促进创新所需的灵活性。引用:Gary Marchant、Lucille Tournas 和 Carlos Ignacio Gutierrez,通过软法管理新兴技术:人工智能的经验教训——导论,61 J URIMETRICS J. 1–18 (2020)。
I. 引言 现代问题通常涉及复杂、不确定和动态的环境。传统的计算方法依赖于精确的输入和确定性过程,而这些对于现实世界的问题并不总是可行的。人工智能 (AI) 在数据驱动的任务中表现出色,而软计算则提供了处理模糊性和不完整信息的强大工具。本文研究了结合人工智能和软计算优势的混合方法。这些系统在同时需要严格精度和适应性的场景中特别有用。 背景 人工智能专注于通过机器学习、自然语言处理和机器人技术复制人类智能。当提供结构化数据和预定义规则时,它在模式识别和决策等任务中表现出色。软计算涉及模糊逻辑、神经网络和遗传算法等方法,所有这些方法都优先考虑近似推理和学习,而不是严格的基于规则的系统。这些技术对于具有不确定性或模糊性的问题很有价值。
在本文中,我们介绍了两种受自然过程启发的混合元启发式算法:蜂群优化 (BCO) 和鲸鱼优化算法 (WOA)。BCO 算法由 Karaboga 于 2005 年首次提出,借鉴了蜜蜂的觅食行为。它以简单和有效解决各种优化问题而闻名。我们将概述 BCO 算法,包括其在群体智能背景下的原理和修改。这种技术研究由众多相互作用的元素组成的分散系统,其探索能力尤为突出。Mirjalili 和 Lewis 于 2016 年提出的鲸鱼优化算法模仿了座头鲸的气泡网狩猎行为。该算法采用群体智能来避免局部最优,并通过模拟渔网方法平衡探索和开发。它的设计有助于实现最优解并有效避免局部陷阱。我们将 BCO 和 WOA 混合成一种新算法,称为 ABCWOA。该混合算法在 16 个优化任务中进行了测试,频率分别为 (100、200、500、1000)。结果表明,ABCWOA 有效地达到了最优解,通常通过在大多数任务中实现较低的最小值 (𝑓_𝑚𝑖𝑛) 来优于传统搜索算法。