保留所有权利。ShotSpotter ® Flex SM、ShotSpotter ® SiteSecure TM、ShotSpotter ®、ShotSpotter ® Gunshot Location System TM 和 ShotSpotter 徽标是 SST, Inc. 的注册商标。TM、SST 和 ShotSpotter 技术受一项或多项已颁发的美国和外国专利保护,其他国内外专利正在申请中,详情请参阅 www.ShotSpotter.com/patents。
在迄今为止使用的海面温度 (SST) 操作处理方法中,在卫星数据影响最小的地方,对 SST 反演算法(通过对卫星测量的辐射与现场观测进行直接回归而开发)的置信度最高,而在卫星数据潜力最大的地方,置信度最低。在卫星记录过程中,现场数据的密度和空间分布发生了显著变化。这些变化可能影响了不同卫星算法的准确性。气溶胶的影响,特别是埃尔奇琼火山 (1982) 和皮纳图博火山 (1991) 的大规模喷发,导致反演的 SST 出现显著偏差和趋势,远远超过了气候监测严格的 0.1 degK.decade -1 要求。虽然 AVHRR Oceans Pathfinder 等再处理工作已成功消除了实际卫星 SST 数据中存在的大部分偏差,但它们在许多领域仍未达到要求;例如,云消除。与从卫星辐射估计 SST 密切相关的两个问题是云检测和表面效应。在云检测中,使用预定阈值可能会影响检测/误报率,因为云状态的变化会影响空间和时间检索误差。更好的方法是将每个观测的确定性级别输入到分析步骤中,作为每个观测的误差极限描述的一部分。在这方面,云检测误差通常是非高斯和非对称的,需要修改分析方法才能产生最佳结果。表面效应(趋肤效应和
“We already use commercial data in EU SST, in addition to scientific and military data“ “We strive to support the competitiveness of European industry and start-ups while increasing the strategic autonomy in the SST domain” “We propose to accelerate the acquisition of European commercial data to enlarge the European operational database, grow a future autonomous catalogue of space objects and increase the quality of service provision”
摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。
摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。
摘要 各种行为任务测量反应抑制,包括取消不必要动作的能力,通过停止信号反应时间 (SSRT) 进行评估。目前尚不清楚 SSRT 是否是抑制网络完整性的不可改变的固有测量方法,还是可以随着重复而改进。当前的研究探讨了预期反应抑制任务 (ARIT) 的 SSRT 在两个会话中是否以及如何变化,以及与停止信号任务 (SST) 相比如何。44 名参与者在两个会话中重复了 ARIT 和 SST。计算了 SSRT 及其组成指标(Go 试验反应时间、停止信号延迟)。反映非选择性反应抑制的 SSRT 在 ARIT 和 SST 的会话之间是一致的(两者 p > 0.293)。反应时间和停止信号延迟在 ARIT 的会话之间也保持稳定(所有 p > 0.063),而在 SST 中,反应时间(p = 0.013)和停止信号延迟(p = 0.009)增加。反映 ARIT 上行为选择性停止的 SSRT 在两个会话中有所改善(p < 0.001),这是由反应时间(p < 0.001)和停止信号延迟(p < 0.001)的变化所证实的。总体而言,非选择性抑制的最大效率在 ARIT 的两个会话中保持稳定。然而,SST 的结果证实,非选择性抑制可能受到抑制网络完整性以外的因素的影响。ARIT 上的行为选择性停止在会话之间发生变化,这表明 SSRT 捕获的连续神经过程在第二个会话中发生得更快。这些发现对未来需要在多个会话中进行行为测量的研究具有重要意义。
本文将介绍欧盟空间监视和跟踪伙伴关系的运作及其在空间态势感知 (SSA) 领域的战略愿景。正如 2021 年 4 月 28 日欧洲议会和理事会条例 (EU) 2021/696(欧盟空间条例)所预见的那样,空间监视和跟踪 (SST) 被确立为欧盟空间计划的一个成熟的安全相关子组成部分,由 15 个欧盟成员国组成的欧盟 SST 伙伴关系于 2022 年 11 月 11 日正式成立,从而取代了之前由 7 个成员国组成的欧盟 SST 联盟。它构成了欧盟空间交通管理 (STM) 方法的运营能力,正如欧洲委员会和欧洲对外行动署于 2022 年 2 月 15 日发布的关于 STM 的联合通讯中所规定的。
- 总结太平洋的赤道区目前由温暖至中性条件主导。温度(SST)在赤道东太平洋的平均水平低于平均水平。从ENSO中立到弱的La Nina的过渡很可能在下个赛季,在2024年7月至9月,有73%的ENSO与中立的机会。在热带北大西洋和南部热带大西洋地区目前正在观察到SST异常变暖状况,并且在接下来的一个月中,这些条件很可能会持续存在,地中海SST接近平均水平,预计从7月至9月期间的预测是中性的。这些将正常地导致西部萨赫勒中心的趋势正常降水,这是西部萨赫勒的平均降水量,即几内亚海湾国家沿海地区趋势低于平均水平的趋势。从2024年7月至9月的预测:
使用线性逆建模(LIM)研究了热带大西洋子午模式(AMM)的可预测性和可变性。使用“能量”规范对LIM进行分析,确定了两种最佳结构,这些结构经历了某些短暂生长,一种与El Nin〜 -Southern振荡(ENSO)有关,另一个与大西洋多年振荡(AMO)/AMM模式有关。使用AMM-norm对LIM进行分析,以识别与第二能量Optima相似结构(OPT2)的“ AMM Optimal”。AMM最佳和OPT2在高纬度大西洋中表现出两个SST异常。AMM最佳选择还包含第一个能量最佳(ENSO)的某些元素,表明LIM捕获了ENSO与AMM之间众所周知的关系。LIM预测与观察到的AMM的季节性相关性在北方弹簧期间的AMM可预测性增强,并且在9月左右初始化的长期(约11-15个月)预测。lims,以确定AMM上的热带pacifip和中纬度和高纬度SST的影响。对区域LIM的分析表明,热带PACIFIC是北方弹簧期间AMM可预测性的原因。中至高纬度SST异常有助于北方夏季和秋季AMM可预测性,并负责从9月的初始条件开始增强可预测性。分析全lim的经验正常模式确定了这些物理关系。结果表明,中高纬度大西洋SST异常在产生AMM(和热带大西洋SST)变化中的潜在重要作用,尽管尚不清楚这些异常是否提供任何社会有用的预测技能。
在人为变暖下,未来对气候变异性的未来变化超出了14个特定模式,例如El ni〜no-Southern振荡(ENSO)尚未得到充分的特征。在社区地球系统模型版本2 16大型合奏(CESM2-LE)气候模型中,未来对海面17温度(SST)变化的变化(以及相应的海洋热浪INTEN-18 SITE)在空间上是异质的。我们使用局部线性随机性-20确定性模型检查了北极前期的这些投影变化(在1960-2000和2060-2100之间),这使我们能够量化三个21个驱动因素对SST变异性的变化的影响:SEST变异:海洋“内存”(SECS“内存”(SST DAMPING DAMPING TIMESCALE),ENSO 22 TELECECONECTIOS和STOCHSTICTION和STOCHSTICTION和STOCHSTICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和Stoch。海洋记忆在大多数23个地区下降,但在北部太平洋中部延长。这种变化主要是由于空气反馈和海洋阻尼的24个变化,而混合层浅25层的深度起着次要作用。ENSO远程连接26模式的向东移动主要负责SST方差变化的模式。27