a 西南科技大学计算机科学与技术学院脑科学与医学人工智能实验室,中国绵阳 b 电子科技大学生命科学与技术学院成都脑科学研究所临床医院神经信息教育部重点实验室、生物医学信息中心,中国成都 c 南洋理工大学计算机科学与工程学院,新加坡
摘要 - 大脑计算机界面(BCI)使人们能够直接与外围设备进行通信和操作。由于其快速通信速率和高信号噪声比,近年来,基于稳态的视觉诱发电位(SSVEP) - 基于BCI的系统已被广泛研究。许多当前的SSVEP识别方法通过发现最大的相关系数来确定目标类别。但是,当最大的系数与其余值没有显着差异时,分类性能通常会降低。这项研究提出了一种基于贝叶斯的分类置信估计方法,以增强基于SSVEP的BCI系统的目标识别性能。在我们的方法中,使用基本目标识别方法产生的最大值和其他值之间的差异用于在训练过程中定义特征向量。使用高斯混合模型(GMM)来估计正确与错误分类的特征向量的概率密度函数。随后,在测试程序中通过贝叶斯推断计算出准确和错误分类的后验概率。基于两个后验概率提出了分类置信值(CCVALUE),以估计分类信心。最后,决策规则可以确定是否应接受或拒绝当前的分类结果。对开放式基准数据集和自收集的数据集进行了广泛的评估研究。实验结果证明了提出的方法提高基于SSVEP的BCI系统的可靠性的有效性和可行性。
目标:我们使用深度卷积神经网络 (DCNN) 对基于稳态视觉诱发电位 (SSVEP) 的单通道脑机接口 (BCI) 中的脑电图 (EEG) 信号进行分类,该接口不需要用户进行校准。方法:EEG 信号被转换为频谱图,并作为输入,使用迁移学习技术训练 DCNN。我们还修改并应用了一种通常用于语音识别的数据增强方法 SpecAugment。此外,为了进行比较,我们使用支持向量机 (SVM) 和滤波器组典型相关分析 (FBCCA) 对 SSVEP 数据集进行了分类。结果:从微调过程中排除评估用户的数据后,我们使用较小的数据长度(0.5 秒)、仅一个电极(Oz)和具有迁移学习、窗口切片(WS)和 SpecAugment 时间掩码的 DCNN,对来自开放数据集的 35 名受试者实现了 82.2% 的平均测试准确率和 0.825 的平均 F1 分数。结论:使用单个电极和较小的数据长度,DCNN 结果优于 SVM 和 FBCCA 性能。迁移学习提供的准确率变化很小,但使训练速度更快。SpecAugment 实现了小幅性能改进,并成功与 WS 结合,获得了更高的准确率。意义:我们提出了一种使用 DCNN 解决 SSVEP 分类问题的新方法。我们还修改了语音识别数据增强技术并将其应用于 BCI 环境中。所提出的方法在数据长度较小且只有一个电极的 BCI 中超越了 FBCCA 和 SVM(更传统的 SSVEP 分类方法)所获得的性能。这种类型的 BCI 可用于开发小型快速系统。
摘要 - 稳定的视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS),由于其快速通信速率和高信噪比,近年来已经大量研究了基本的研究。传输学习通常用于通过来自源域的辅助数据来提高基于SSVEP的BCI的性能。这项研究提出了一种通过转移模板和转移的空间过滤器来增强SSVEP识别性能的间接转移学习方法。在我们的方法中,通过多个协方差最大化训练空间过滤器,以提取与SSVEP相关的信息。培训试验,单个模板和人工构造的参考之间的关系涉及培训过程。将空间过滤器应用于上述模板以形成两个新的传输模板,并通过最小平方的回归获得了传输的空间滤波器。可以根据源主题和目标受试者之间的距离来计算不同源主题的贡献得分。最后,为SSVEP检测构建了四维特征向量。为了证明所提出的方法的有效性,采用了公开可用的数据集和一个自收集的数据集进行绩效评估。广泛的实验结果验证了提出的改善SSVEP检测方法的可行性。
摘要:与传统的生物特征识别方法相比,由于其独特的特性,大脑生物识别技术引起了科学界的越来越多的关注。许多研究表明,脑电图特征在个人之间是不同的。在这项研究中,我们通过考虑特定频率的视觉刺激引起的大脑反应的空间模式提出了一种新的方法。更具体地说,我们建议,用于识别个体,将常见的空间模式与专门的深度学习神经网络相结合。采用常见的空间模式使我们能够设计个性化的空间过滤器。此外,在深层神经网络的帮助下,空间模式被映射到新的(深)表示中,在这些表示中,以高正确的识别率进行了个人之间的歧视。我们在两个稳态视觉诱发的潜在数据集上进行了全面比较,分别由三十五和11受试者组成的两个稳态视觉诱发的潜在数据集进行了全面比较。此外,我们的分析包括稳态视觉诱发的潜在实验中的大量闪烁频率。对这两个稳态视觉诱发潜在数据集进行的实验显示了我们方法在人识别和可用性方面的有用性。所提出的方法在大量的视觉刺激频率上实现了99%的平均正确识别率。
ISSN 1004‑9037,代码元SCYCE4数据采集与处理杂志卷。37,编号6,2022年11月,第pp。1401-1411 doi:10。16337/j。1004-9037。2022。06。020ⓒ2022撰写的数据采集与处理杂志
摘要 — 基于 SSVEP 的 BCI 在速度和准确性方面是最有前途的 BCI 之一。然而,尽管社区付出了巨大的努力使它们更加实用和用户友好,但它们使用起来仍然特别烦人。在本文中,我们研究了 SSVEP 视觉刺激的大小和对比度对分类准确性和界面烦恼的影响,总体目标是在性能和用户友好性之间找到一个平衡点。我们对十二 (12) 名参与者进行了用户研究,以评估不同刺激大小和对比度对虚拟现实环境中 SSVEP 分类准确性的联合影响。该实验的结果表明,刺激的大小对分类准确性(低于某个阈值)和感知烦恼都有显著影响。然而,对比度对分类准确性和感知烦恼都没有影响,这表明使用较低对比度的刺激仍然可以准确地操作基于 SSVEP 的 BCI。索引术语 — 组件、格式、样式、样式、插入
摘要 — 目标:用脑电图 (EEG) 测量的稳态视觉诱发电位 (SSVEP) 在脑机接口 (BCI) 拼写器中产生不错的信息传输速率 (ITR)。然而,目前文献中高性能的 SSVEP BCI 拼写器需要对每个新用户进行初始冗长而累人的用户特定训练以适应系统,包括使用 EEG 实验收集数据、算法训练和校准(所有这些都在实际使用系统之前)。这阻碍了 BCI 的广泛使用。为了确保实用性,我们提出了一种基于深度神经网络 (DNN) 集合的全新目标识别方法,该方法不需要任何类型的用户特定训练。方法:我们利用先前进行的 EEG 实验的参与者的现有文献数据集,首先训练一个全局目标识别器 DNN,然后针对每个参与者进行微调。我们将这组经过微调的 DNN 集合转移到新的用户实例,根据参与者与新用户的统计相似性确定 k 个最具代表性的 DNN,并通过集合预测的加权组合来预测目标字符。结果:在两个大规模基准和 BETA 数据集上,我们的方法实现了令人印象深刻的 155.51 比特/分钟和 114.64 比特/分钟 ITR。代码可用于重现性:https://github.com/osmanberke/Ensemble-of-DNNs 结论:在两个数据集上,对于所有刺激持续时间在 [0.2-1.0] 秒内的情况,所提出的方法都明显优于所有最先进的替代方案。意义:我们的 Ensemble-DNN 方法有可能促进 BCI 拼写器在日常生活中的实际广泛部署,因为我们提供最高性能,同时允许立即使用系统而无需任何用户特定的训练。索引词 — 脑机接口、BCI、EEG、SSVEP、集成、深度学习、迁移学习
摘要:在本文中,我们提出了基于规范相关分析(CCA)的EEG信号的分类算法,并与自适应过滤整合。它可以增强大脑 - 计算机接口(BCI)拼写中的稳态视觉诱发电势(SSVEP)的检测。通过删除背景脑电图(EEG)活动,在CCA算法前采用了一种自适应过滤器来提高SSVEP信号的信噪比(SNR)。开发了整体方法是为了整合与多个刺激频率相对应的递归最小二乘(RLS)自适应过滤器。该方法由实际实验从六个目标记录的SSVEP信号和Tsinghua University的40个目标的公共SSVEP数据集中记录下来的SSVEP信号。比较了CCA方法的精度和基于CCA的集成RLS滤波器算法(RLS-CCA方法)。实验结果表明,与纯CCA方法相比,提出的基于RLS-CCA的方法显着提高了分类精度。尤其是当脑电图的数量较低时(三个枕发电极和五个非枕骨电极)时,其优势更为明显,精度达到91.23%,这更适合于高密度EEG不容易收集的可穿戴环境。