摘要 - 稳定的视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS),由于其快速通信速率和高信噪比,近年来已经大量研究了基本的研究。传输学习通常用于通过来自源域的辅助数据来提高基于SSVEP的BCI的性能。这项研究提出了一种通过转移模板和转移的空间过滤器来增强SSVEP识别性能的间接转移学习方法。在我们的方法中,通过多个协方差最大化训练空间过滤器,以提取与SSVEP相关的信息。培训试验,单个模板和人工构造的参考之间的关系涉及培训过程。将空间过滤器应用于上述模板以形成两个新的传输模板,并通过最小平方的回归获得了传输的空间滤波器。可以根据源主题和目标受试者之间的距离来计算不同源主题的贡献得分。最后,为SSVEP检测构建了四维特征向量。为了证明所提出的方法的有效性,采用了公开可用的数据集和一个自收集的数据集进行绩效评估。广泛的实验结果验证了提出的改善SSVEP检测方法的可行性。
主要关键词