摘要 - 大脑计算机界面(BCIS)的快速演变显着影响了人类计算机相互作用的领域,具有稳态的视觉诱发电势(SSVEP),作为一种尤其是强大的范式。这项研究探讨了高级分类技术利用可解释的模糊转移学习(IFUzzyTL)来增强基于SSVEP系统的适应性和性能。最近的努力通过创新的转移学习方法加强了减少校准要求,从而通过策略性地应用域适应性和很少的动作学习策略来完善跨主题的生成性并最大程度地减少校准。深度学习中的开创性发展还提供了有希望的增强功能,促进了稳健的领域适应性,并显着提高了SSVEP分类的系统响应能力和准确性。但是,这些方法通常需要复杂的调整和广泛的数据,从而限制了立即适用性。ifuzzytl引入了一个自适应框架,该框架将模糊逻辑原理与神经网络体系结构相结合,重点关注有效的知识传递和域自适应。ifuzzytl通过整合模糊的推理系统和注意机制来完善人类干预格式的输入信号处理和分类。这种方法通过有效管理脑电图数据的固有可变性和不确定性来增强模型的精度,并与现实世界的运营需求保持一致。在三个数据集中证明了该模型的功效:12JFPM(1s的12JFPM(89.70%精度为149.58),基准(ITR为85.81%,ITR的精度为85.81%),ITR的准确性为213.99)和Eldbeta(76.50%的IT and and and and ath and and and and and and and and and and and and and and and aft)and 94.63)和94.63)和94.63) SSVEP BCI性能的基准。
主要关键词