一般权利一般权利所有珍珠中的内容均受版权法保护。根据发布者政策提供作者手稿。请仅使用项目记录或文档中提供的详细信息引用发布的版本。在没有公开许可证的情况下(例如Creative Commons),应从出版商或作者那里寻求进一步重用内容的许可。取消策略取消政策,如果您认为本文档违反版权,请联系提供详细信息的图书馆,我们将立即删除对工作的访问并调查您的索赔。遵循以下工作:https://pearl.plymouth.ac.uk/ada-research
1个心理科学学院,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 2英国牛津大学医学院实验心理学系; 3墨尔本墨尔本大学心理科学学院,澳大利亚墨尔本; 4澳大利亚堪培拉大学卫生学院心理学学科; 5特纳大脑与心理健康研究所,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 6日本苏亚国家信息与通信技术学院(NICT)信息与神经网络中心(Cinet); 7高级电信研究计算神经科学实验室,2-2-2 Hikaridai,Seika-Cho,Soraku-Gun,京都,日本,日本
摘要 — 为了增强基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的目标识别性能,已经提出了各种空间滤波器。当前的方法仅从相应刺激中提取目标相关信息来学习空间滤波器参数。然而,来自邻近刺激的 SSVEP 数据也包含目标刺激的频率信息,可用于进一步提高目标识别性能。在本文中,我们提出了一种结合来自邻近刺激的 SSVEP 来增强目标相关频率信息的新方法。首先,通过最大化对应于目标及其邻近刺激的 SSVEP 数据的协方差之和来获得空间滤波器。然后计算空间滤波模板和测试数据之间的相关特征以进行目标检测。为了进行性能评估,我们使用来自 35 名受试者的 40 类基准数据集和来自 11 名受试者的 12 个目标自收集数据集进行了离线实验。与最先进的空间滤波方法相比,所提出的方法在分类准确率和信息传输速率 (ITR) 方面表现出优势。比较结果证明了所提出的空间滤波器对于基于 SSVEP 的 BCI 中的目标识别的有效性。
[1] Muse™:Muse 2:脑感应头带 - 技术增强冥想,https://choosemuse.com/muse-2/。(访问日期:2021/12/01)。[2] FocusCalm:FocusCalm — 训练你的大脑以减轻压力 — 冥想头带,https://focuscalm. com/。(访问日期:2021/12/01)。[3] NextMind:NextMind - 实时脑机接口 - 立即订购你的开发套件,https://www.next-mind.com/。(访问日期:2021/12/01)。 [4] Parini, S.、Maggi, L.、Turconi, AC 和 Andreoni, G.: 基于四类 SSVEP 范式的稳健且自定步调的 BCI 系统:高传输率直接脑通信的算法和协议,计算智能与神经科学,第 2009 卷,第 1-11 页 (2009)。[5] Gembler, F.、Stawicki, P. 和 Volosyak, I.: 使用新颖的 BCI 向导对基于 SSVEP 的 BCI 进行自主参数调整,神经科学前沿,第 9 卷,第 474 页 (2015)。[6] Gembler, F.、Stawicki, P. 和 Volosyak, I.: 探索基于多目标 SSVEP 的 BCI 应用的可能性和局限性,2016 年第 38 届国际
摘要 — 为了提高基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的目标识别性能,已经提出了许多空间滤波方法。现有的方法倾向于仅使用来自同一刺激的训练数据来学习某个目标的空间滤波器参数,并且它们很少考虑来自其他刺激的信息或训练过程中的体积传导问题。在本文中,我们提出了一种新的基于多目标优化的高通空间滤波方法来提高 SSVEP 检测的准确性和鲁棒性。滤波器是通过最大化训练信号和来自同一目标的单个模板之间的相关性,同时最小化来自其他目标的信号与模板之间的相关性来得出的。优化还将受到滤波器元素之和为零的约束。在两组自采集的 SSVEP 数据集(分别包含 12 个和 4 个频率)上的评估研究表明,所提方法优于 CCA、MsetCCA、SSCOR 和 TRCA 等比较方法。所提方法还在 35 名受试者记录的公开 40 类 SSVEP 基准数据集上进行了验证。实验结果证明了所提方法对提升 SSVEP 检测性能的有效性。
在虚拟现实 (VR) 中,稳态视觉诱发电位 (SSVEP) 可用于通过脑信号与虚拟环境进行交互。然而,SSVEP 诱发刺激的设计通常与虚拟环境不匹配,因此会破坏虚拟体验。在本文中,我们研究了不同适应性刺激设计,以融入虚拟环境。因此,我们创造了不同形状的虚拟蝴蝶。形状从矩形翅膀到圆形翅膀,再到真实蝴蝶的翅膀形状。这些蝴蝶通过不同的动画(闪烁或拍打翅膀)引发 SSVEP 反应。为了评估我们的刺激,我们首先从文献中提取了适合 SSVEP 反应的频率。在第一项研究中,我们确定了在 VR 中产生最佳检测精度的三个频率。我们在第二项研究中使用这些频率来分析使用我们的刺激设计的检测精度和外观评级。我们的工作为融入虚拟环境并仍能引发 SSVEP 反应的 SSVEP 刺激的设计提供了见解。
用户意图。基于 SSVEP 与视觉刺激调制频率锁定这一知识,界面通常设置为在场景中具有多个目标,每个目标都标记有一个通过闪烁传递的唯一频率。目标可以是放置在物体上或附近的发光二极管 (LED),以表示潜在动作、物品或到达坐标 [4–7],也可以表示在计算机屏幕上,每个目标块代表 BMI 拼写器中的字符或用于控制计算机或其他设备的命令 [8–10]。为了从界面中呈现的所有目标中识别出用户的预期目标,解码算法会分析包含 SSVEP 的收集到的脑信号的频率成分,并根据主要频率特征做出决策。在典型的 SSVEP 设置中,诱发的 SSVEP 包含刺激频率 𝑓 ,以及该频率的谐波 2 𝑓、3 𝑓,... [1, 11]。传统基于 SSVEP 的 BMI 的局限性之一是目标数量受到 SSVEP 有限的响应范围 [1] 和谐波存在的限制,如果在界面中同时使用某个频率及其谐波,可能会导致错误分类。这减慢了 BMI 在提高命令处理能力(命令数量)方面的发展 [12]。为了解决这个问题,引入了多频 SSVEP 刺激方法,旨在增加在有限频率下可呈现的目标数量 [13–17]。然而,多频 SSVEP 的解码器尚未得到广泛探索。现有的多频 SSVEP 解码器包括基于功率谱密度的分析(PSDA)[15, 17]、多频典型相关分析(MFCCA)[18] 和针对每个单独用户或用例的基于训练的算法 [13, 19]。与两种无需训练的方法相比,基于训练的算法具有更高的分类准确率,但需要为每个用户进行额外的训练和界面设置。PSDA 和 MFCCA 支持即插即用,提高了 BMI 的实用性。然而,PSDA 通常解码准确率有限,因为它没有充分考虑多频 SSVEP 中的复频率特征,这些特征不仅包含刺激频率及其谐波(如单频 SSVEP),还包含刺激频率之间的线性相互作用 [16]。MFCCA 通过在解码中引入线性相互作用而显示出在多频 SSVEP 解码中的优势 [18],但 MFCCA 的一个主要问题是它是基于典型相关分析 (CCA) [20] 开发出来的,具有很高的时间复杂度。 CCA 的渐近时间复杂度为 O ( lD 2 ) + O ( D 3 ) (以 O ( n 3 ) 为界,其中 n 表示解码时的输入大小),其中 l
摘要:稳态的视觉诱发电位(SSVEP)是脑电图中与事件相关的潜力(EEG),已应用于大脑 - 计算机接口(BCIS)。基于SSVEP的BCIS目前在各种BCI实施方法中在信息传输率(ITR)方面表现最好。规范组件分析(CCA)或频谱估计(例如傅立叶变换及其扩展)已用于提取SSVEP的特征。但是,这些信号提取方法在可用的刺激频率上有限制。因此,命令的数量有限。在本文中,我们提出了一个复杂的有价值的卷积神经网络(CVCNN),以克服基于SSVEP的BCI的限制。实验结果表明,所提出的方法克服了刺激频率的限制,并且表现优于常规的SSVEP特征提取方法。
摘要:在基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 研究的频率识别各种方法中,任务相关成分分析 (TRCA) 引起了广泛关注,它提取用于对脑电图 (EEG) 信号进行分类的判别空间滤波器。与现有的 SSVEP 方法相比,基于 TRCA 的 SSVEP 方法具有更低的计算成本和更高的分类性能。尽管基于 TRCA 的 SSVEP 方法很实用,但在使用短窗口 EEG 信号的情况下,它仍然会受到频率识别率下降的影响。为了解决这个问题,我们在此提出了一种改进的 SSVEP 解码策略,该策略通过执行两步 TRCA 不受窗口长度影响。所提出的方法重用了与 TRCA 生成的目标频率相对应的空间滤波器。随后,所提出的方法通过关联单个模板和测试数据来强调目标频率的特征。为了评估所提方法的性能,我们使用了包含 35 名受试者的基准数据集,并确认与其他现有 SSVEP 方法相比,其性能显著提高。这些结果表明,该方法适合作为基于 SSVEP 的 BCI 应用的有效频率识别策略。
归因于脑电图(EEG)信号的信噪比差(SNR)[3]。可以通过增加信号水平和/或降低噪声水平来改善SSVEP信号的SNR。研究人员在改善SSVEP的SNR并提高BCI性能方面取得了长足的进步。首先,研究人员通过应用高级信号处理方法改善了SNR。例如,在当前的BCI系统中广泛使用试验平均,以改善脑电图分析中的SNR [3]。空间过滤已用于将多通道脑电图数据投射到低维空间空间中,以消除任务 - 无关的组件并改善与任务相关的EEG信号的SNR [4]。对于SSVEP,规范相关分析(CCA)方法可以最大程度地提高SSVEP的检测频率[5,6]。独立的组件分析是另一种空间滤波方法,通过将与任务相关的脑电图组件与任务 - iRrelevant eeg和人为成分分开,从而增强了脑电图信号的SNR [7,8]。第二,研究人员设计了实验以获得增强的与任务相关的脑电图信号并改善SNR。例如,在有效的基于SSVEP的BCI中,与使用Checkerboard刺激获得的刺激相比,使用情感人脸的视觉刺激大大提高了SSVEP信号的振幅[9]。第三,一些研究人员调整了视觉刺激亮度的参数,以调节SSVEP响应的幅度,从而改善了SSVEP的SNR [10-12]。例如,相关研究表明,亮度对比信息对于形式,运动和深度的感知至关重要[13,14]。亮度对比或“调制深度”定义为最大亮度的比率减去最小亮度与最大亮度以及