摘要:针对从人类有机体衍生的信号的研究变得越来越流行。在这个领域,基于脑电波的脑部计算机界面扮演了特殊的角色。由于脑电图记录设备和较低的设定价格的缩小尺寸,它们变得越来越受欢迎。不幸的是,此类系统在生成的命令数量方面受到很大的限制。这尤其适用于不是医疗设备的集合。本文提出了一个基于稳态视觉诱发电位(SSVEP),EOG,眼睛跟踪和力反馈系统的混合脑计算机系统。这样的扩展系统消除了许多特定的系统缺点,并提供了更好的结果。本文的第一部分介绍了有关混合脑部计算机系统中应用的方法的信息。根据操作员将机器人的尖端放置在指定位置的能力来测试提出的系统。提出了工业机器人的虚拟模型,该模型用于测试。在现实生活中的工业机器人上重复测试。通过启用和禁用的反馈系统验证了系统的定位精度。在模型和真实对象上进行的测试结果清楚地表明,在由操作员控制时,力反馈提高了机器人尖端的定位精度。此外,模型和现实生活中的工业模型的结果非常相似。在下一阶段,对使用BCI系统进行分类项目的可能性进行了研究。该研究是在模型和真正的机器人上进行的。结果表明,可以使用来自人体的生物信号进行排序。
在这项研究中,提出了信息瓶颈方法作为稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCI)的优化方法。信息瓶颈是一种信息理论优化方法,可在保留有意义的信息和压缩之间解决问题。它在机器学习中的主要实际应用是表示学习或特征提取。在这项研究中,我们使用信息瓶颈来为BCI找到最佳的分类规则。这是信息瓶颈的新颖应用。此方法特别适合BCIS,因为信息瓶颈优化了BCI传输的信息量。稳态视觉诱发的基于潜在的BCI经常使用非常简单的规则进行分类,例如选择与最大特征值相对应的类。我们称此分类为Arg Max分类器。这种方法不太可能是最佳的,在这项研究中,我们提出了一种专门设计的分类方法,以优化BCIS的性能度量。这种方法比标准机器学习方法具有优势,该方法旨在优化不同的措施。在两个实验的两个公开可用数据集上测试了所提出的算法的性能。我们使用标准功率频谱密度分析(PSDA)和规范相关分析(CCA)在一个数据集上的特征提取方法,并表明当前方法的表现优于该数据集的大多数相关研究。在第二个数据集上,我们使用与任务相关的组件分析(TRCA)方法,并证明所提出的方法在使用少量类时,根据信息传输率,标准ARG最大分类规则优于标准ARG最大分类规则。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。 该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。 它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。
摘要 — 稳态视觉诱发电位 (SSVEP) 因其众多优点而成为脑机接口 (BCI) 中最广泛使用的模式之一。然而,由于 SSVEP 中谐波的存在和响应频率范围有限,因此很难在不牺牲接口其他方面或对系统施加额外限制的情况下进一步扩大目标数量。本文介绍了一种用于 SSVEP 的新型多频刺激方法,并研究了其有效增加呈现目标数量的潜力。所提出的刺激方法是通过叠加不同频率的刺激信号获得的,具有尺寸效率高、允许单步目标识别、对可用频率范围没有严格限制、适用于自定步调的 BCI,并且不需要特定的光源。除了刺激频率及其谐波之外,诱发的 SSVEP 波形还包括刺激频率的整数线性组合的频率。使用仅以频率和谐波为参考的典型相关分析 (CCA) 解码从九名受试者收集的 SSVEP 的结果也证明了在基于 SSVEP 的 BCI 中使用这种刺激范式的潜力。
摘要:对于具有肌萎缩性侧面硬化症(ALS)的受试者,言语和非言语通知受到很大的损害。基于视觉诱发电位(SSVEP)的大脑计算机界面(BCIS)是成功的替代增强通信之一,可帮助ALS与他人或设备进行通信。对于实际应用,噪音的影响大大降低了基于SSVEP的BCI的性能。因此,开发基于SSVEP的强大BCI对于帮助受试者与他人或设备进行交流非常重要。在这项研究中,提出了基于噪声抑制的特征提取和深度神经网络,以开发出强大的基于SSVEP的BCI。为了抑制噪音的影响,提出了一种denoising自动编码器来提取降解功能。为了获得实用应用的可接受识别结果,深层神经网络用于发现基于SSVEP的BCI的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且基于SSVEP的BCI的性能可以大大改善。此外,深神经网络的表现优于其他方法。因此,提出的基于SSVEP的BCI对实际应用非常有用。
完全锁定患者的人类计算机互动(HCI)是一项非常艰巨的任务。如今,信息技术(IT)已成为人类生活的重要组成部分。完全锁定状态的患者通常无法通过这些有用的技术进步来促进自己。因此,在残疾后,他们无法在整个生命周期内使用现代的IT小工具和应用。大脑计算机接口(BCI)的进步启用了当一个人由于认知运动障碍而无法以常规方式与设备交互时,可以使用大脑信号操作IT设备。但是,现有的最新应用程序特定的BCI设备相对昂贵。本文介绍了一项研发工作,旨在设计和开发低成本的通用HCI系统,该系统可用于通过大脑信号操作计算机和通用控制面板。该系统基于稳态视觉诱发电位(SSVEP)。在拟议的系统中,通过脑电图(EEG)电极和开源BCI硬件的许多不同频率的不同频率的闪烁灯来响应这些电信号。对健康参与者进行的成功步道表明,严重瘫痪的受试者可以操作计算机或控制面板作为常规HCI设备的替代方案。
目标:我们使用深度卷积神经网络 (DCNN) 对基于稳态视觉诱发电位 (SSVEP) 的单通道脑机接口 (BCI) 中的脑电图 (EEG) 信号进行分类,该接口不需要用户进行校准。方法:EEG 信号被转换为频谱图,并作为输入,使用迁移学习技术训练 DCNN。我们还修改并应用了一种通常用于语音识别的数据增强方法 SpecAugment。此外,为了进行比较,我们使用支持向量机 (SVM) 和滤波器组典型相关分析 (FBCCA) 对 SSVEP 数据集进行了分类。结果:从微调过程中排除评估用户的数据后,我们使用较小的数据长度(0.5 秒)、仅一个电极(Oz)和具有迁移学习、窗口切片(WS)和 SpecAugment 时间掩码的 DCNN,对来自开放数据集的 35 名受试者实现了 82.2% 的平均测试准确率和 0.825 的平均 F1 分数。结论:使用单个电极和较小的数据长度,DCNN 结果优于 SVM 和 FBCCA 性能。迁移学习提供的准确率变化很小,但使训练速度更快。SpecAugment 实现了小幅性能改进,并成功与 WS 结合,获得了更高的准确率。意义:我们提出了一种使用 DCNN 解决 SSVEP 分类问题的新方法。我们还修改了语音识别数据增强技术并将其应用于 BCI 环境中。所提出的方法在数据长度较小且只有一个电极的 BCI 中超越了 FBCCA 和 SVM(更传统的 SSVEP 分类方法)所获得的性能。这种类型的 BCI 可用于开发小型快速系统。
摘要 - 目的:通过使用单个校准数据,当前的最新方法显着提高了稳态诱发电位(SSVEP)的检测性能。但是,耗时的校准会限制了培训试验的数量,并可能导致视觉疲劳,从而削弱了单个培训数据的效率。为解决此问题,本研究提出了一种新型的受试者间和受试者内最大相关性(IISMC)方法,以通过采用跨主体间和受试者的相似性和可变性来增强SSVEP识别的鲁棒性。通过有效的转移学习,在相同任务下的类似经验在主题之间共享。方法:IISMC从自己和其他受试者中提取主题的特定信息和与任务相关的相似信息,通过最大化和内部对象内相关性来执行相同任务。多个弱分类器是由几个现有主题构建的,然后集成以通过平均加权来构建强晶格。最后,为目标识别获得了强大的融合预测指标。结果:在35个受试者的基准数据集上验证了所提出的框架,实验结果表明,IISMC获得的性能要比与TART与任务相关的成分分析(TRCA)的状态更好。明显:所提出的方法具有开发高速BCI的巨大潜力。
摘要:在基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 研究的频率识别各种方法中,任务相关成分分析 (TRCA) 引起了广泛关注,它提取用于对脑电图 (EEG) 信号进行分类的判别空间滤波器。与现有的 SSVEP 方法相比,基于 TRCA 的 SSVEP 方法具有更低的计算成本和更高的分类性能。尽管基于 TRCA 的 SSVEP 方法很实用,但在使用短窗口 EEG 信号的情况下,它仍然会受到频率识别率下降的影响。为了解决这个问题,我们在此提出了一种改进的 SSVEP 解码策略,该策略通过执行两步 TRCA 不受窗口长度影响。所提出的方法重用了与 TRCA 生成的目标频率相对应的空间滤波器。随后,所提出的方法通过关联单个模板和测试数据来强调目标频率的特征。为了评估所提方法的性能,我们使用了包含 35 名受试者的基准数据集,并确认与其他现有 SSVEP 方法相比,其性能显著提高。这些结果表明,该方法适合作为基于 SSVEP 的 BCI 应用的有效频率识别策略。
抽象目标。本研究旨在建立一个广义的转移学习框架,以通过利用跨域数据传输来提高稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS)的性能。方法。我们通过结合了最小二乘转换(LST)的转移学习来增强基于最新的模板的SSVEP解码,以利用跨多个域(会话,主题和脑电图蒙太奇)利用校准数据。主要结果。研究结果验证了LST在跨域传输现有数据时消除SSVEP的可变性的功效。此外,基于LST的方法比标准与任务相关的组件分析(TRCA)的方法和非第一个天真转移学习方法明显更高的SSVEP解码精度。意义。这项研究证明了基于LST的转移学习能够在各种情况下对其原理和行为进行深入研究,从而利用主题和/或设备的现有数据。当校准数据受到限制时,提出的框架显着提高了标准TRCA方法的SSVEP解码精度。其在校准减少方面的性能可以促进基于SSVEP的BCIS和进一步的实用应用。
摘要:大脑 - 计算机接口(BCI)可以通过注册和处理脑电图(EEG)信号来提取有关受试者意图的信息,以生成对物理系统的操作。稳态视觉诱发的电位(SSVEP)是当受试者凝视着视觉刺激时产生的。通过光谱分析并测量其谐波含量的信噪比(SNR),可以识别观察到的刺激。刺激颜色很重要,一些作者提出了红色,因为它具有吸引注意力的能力,而另一些作者则拒绝了它,因为它可能会诱发癫痫发作。绿色也已提出,据称白色可能会产生最好的信号。关于频率,尽管尚未彻底研究高频,但声称中间频率产生了最佳的SNR,并且由于该频带的自发性脑活动较低,因此可能是有利的。在这里,我们以三个频率显示白色,红色和绿色刺激:5(低),12(中)和30(高)Hz至42个受试者,并进行比较以找到可以产生最佳SNR的。我们的目标是知道对白色的响应是否像红色一样强,并且对高频的响应是否与较低频率触发的响应一样强。注意力。方差分析(ANOVA)显示了具有中间频率的最佳SNR,其次是低,最终是高频率的。白色在12 Hz时给出了红色的SNR,绿色为5 Hz,在30 Hz时没有差异。这些结果表明中间频率是可取的,并且可以避免使用红色。相关性分析还显示了注意力低频与SNR之间的相关性,因此表明对于低频,更多的注意力能力会带来更好的结果。