姓氏“ Sectionin”源自Sectionin受体,该受体是该家庭中首次克隆的。3,1975年,Sasaki等。33求解了胰高血糖素的第一个X射线晶体结构,一个家族B GPCR。34 The family corresponds to group B of the A – F system of classi cation, 3 and comprises 15 members including: vasoactive intestinal peptide receptors (vIPR1, vIPR2), glucagon- like peptide receptors (GLP1R, GLP2R), adenylate cyclase acti- vating polypeptide receptor (PAC1/ADCYAP1R1), growth-激素释放激素受体(GHRHR),降钙素和类钙蛋白样受体(CALCR,CALCRL),胃抑制性多肽受体(GIPR),分泌蛋白受体(SCTR),cortropin-释放激素受体受体(CRHR1,CRHR1,CRHR1,GLCGOGAGON),GCRONORN HYRORS(GLCGOGANER)(GLCGOGAGON HYRORS HYRORS(GLCGRANER))(CRHR1,GLCGOGANS,GLCRONER HYRORS HYRORS(GLCRONER))受体(PTHR1,PTHR2)。3,31这15个受体共享21和
我们感谢 Informa 为我们提供其数据和专业知识,并特别感谢 Will Akie、Christine Blazynski、Gabrielle Gessner、Mark Gordon、Michael Hay、Ian Lloyd 和 Ryan Sasaki。我们还感谢 Christine Blazynski、John Tedrow、编辑、副编辑和审稿人对本文提出的有益评论。我们非常感谢麻省理工学院金融工程实验室的研究支持和洛克菲勒基金会的资金支持。本文中表达的观点和意见仅代表作者本人,并不一定代表任何机构或机构、其任何附属机构或员工、上述任何个人或国家经济研究局的观点和意见。我们非常感谢麻省理工学院金融工程实验室的资金支持,但本研究未获得直接资助,也没有任何资助机构参与研究设计、数据收集和分析、发表决定或本文的准备工作。在撰写本文期间,作者的个人工资由其所在机构支付(尽管没有为撰写本文留出或提供特定工资)。
5月9日:谢谢您的成员,Phil Uyehara和Giselle Miyashiro邀请您的个人健身教练Kaizen F.I.T.N.E.S.S.的Jedd Ramos花时间并教我们的会员。根据杰德(Jedd)的说法,健康且适合健康永远不会太晚,可以在1街之前长寿,保持活跃,做家务,院子工作和其他活动。2和您吃的食物应该是基本的,而不是垃圾食品。3 rd,您需要像我们的ONC Group这样的有意义的关系,以便彼此在一起并共同做朋友。在做任何事情之前要做的第一件事就是通过鼻子呼吸,这非常重要。80%的人通过他们的嘴呼吸,这是未经过滤的,您最终会咳嗽,冷,倾向于睡觉时打sn。通过鼻子呼吸,使过滤湿润的空气湿润。重要的是要通过鼻子呼吸,握住它,然后再呼吸,然后正常呼吸。移动性很重要!您首先需要温暖身体,这样您就不会受伤。要保持坚固且稳定,您需要建立核心,这是从大腿中部到上胸部区域的。杰德教会了我们从手指到脚趾的许多伸展。我们在这些练习过程中做了适当的呼吸。正确的呼吸愉快并学习以在我们的核心中增强力量。5月16日:母亲节庆祝活动与Tamagusuku Ryu Senju Kai&Frances Nakachi Senseis舞蹈学院,该学院的遗产范围超过27年。目前她的学生年轻3-83岁。这是一个很棒的感人节目。,让Nakachi Sensei和她的学生们以其美丽的服装,传统和民间舞蹈为我们娱乐我们总是很不错的时机。他们结束了他们的出色计划,成员做“ kachashi”,然后在母亲节中向所有人分发小吃。5月23日:阵亡将士纪念日庆祝活动,以记住我们去年去年去世的所有LMPSC成员。家人,朋友和成员聚集在一起以纪念他们的亲人和特殊死者。被称为死者的名字,为了纪念亲人而将家人和朋友放在正面的花瓶中。每个文化俱乐部主席或代表也向他们的尊敬表示敬意,并由这位白人妈妈的演讲,其次是所有其他在那里的成员。成员的精美花卉布置为房间增光添彩。umaribi-kariyushi yaibii-n(生日快乐)至:蒙娜·贝纳多,埃尔米纳·伊玛村,Yoshiko kumura,Teresa Sasaki,Teresa Sasaki,Mildred Suzuki,Frank Toma,Yoneko Tsuchiyama tsuchiyama&Jeanette Yamane and Yamane Yamane Yamane Yamane Yamane
月球探索始于 20 世纪 50 年代,1969 年至 1972 年阿波罗计划的实施为人类了解月球、月球早期历史、月球与地球的关系以及月球在太阳系中的位置做出了巨大贡献(参见Taylor,1982 年)。这也为许多有关月球作为行星的新问题奠定了基础,并为月球在人类太空探索和太空商业开发中的未来作用提供了令人振奋的概念。阿波罗计划结束后,月球探索的下一阶段被认为是月球极地轨道器,这是一项轨道遥感计划,旨在从全球角度了解月球的化学和矿物学(JPL,1977 年)。二十多年后,美国国防部的克莱门汀任务和美国国家航空航天局的月球勘探者任务开始着手解决这些全球测绘问题。欧洲航天局的 SMART-1 任务(Foing 等人,2002 年)和日本的 Lunar-A 和 SELENE 任务(Mizutani 等人2002 年;Sasaki 等人2002 年)将进一步解决这些问题,这些任务应于 2005-2006 年完成。
Kiyoshi Shikino 1,2,MHPE,医学博士;塔罗·辛普(Taro Shimizu)3,MSC,MPH,MBA,MD,医学博士,博士; Yuki Otsuka 4,医学博士,博士; Masaki Tago 5,医学博士;高地岛Hiromizu Hiromizu 6,医学博士,博士; Takashi Watari 7,MHQS,医学博士; Sasaki 8,医学博士,博士; Gemmei Iizuka 9,10,医学博士,博士; Hiroki Tamura 1,医学博士,博士; nakashima 11,马里兰州; Kotaro Kuni-Tomo 12,医学博士; Morika Suzuki 12,13,医学博士,博士; Sayaka Aoyama 14,医学博士; Shintaro Kosaka 15,医学博士; Teiko Kawahigashi 16,医学博士,博士; Tomohiro Matsumoto 17,医学博士,DDS,博士;富米娜·奥里哈拉(Fumina Orihara)17,马里兰州; Toru Morikawa 18,医学博士; Toshi-Nori Nishizawa 19,医学博士; Yoji Hoshina 13,医学博士; Yu Yamamoto 20,医学博士; Yuichiro Matsuo 21,MPH,医学博士; Yuto Unoki 22,医学博士; Hirofumi Kimura 22,医学博士; Midori Tokushima 23,马里兰州; Satoshi Watanabe 24,MBA,医学博士;马里兰州的高玛塞托24; Fumio Otsuka 4,医学博士,博士; Yasuharu Tokuda 25、26,MPH,MD,PHDKiyoshi Shikino 1,2,MHPE,医学博士;塔罗·辛普(Taro Shimizu)3,MSC,MPH,MBA,MD,医学博士,博士; Yuki Otsuka 4,医学博士,博士; Masaki Tago 5,医学博士;高地岛Hiromizu Hiromizu 6,医学博士,博士; Takashi Watari 7,MHQS,医学博士; Sasaki 8,医学博士,博士; Gemmei Iizuka 9,10,医学博士,博士; Hiroki Tamura 1,医学博士,博士; nakashima 11,马里兰州; Kotaro Kuni-Tomo 12,医学博士; Morika Suzuki 12,13,医学博士,博士; Sayaka Aoyama 14,医学博士; Shintaro Kosaka 15,医学博士; Teiko Kawahigashi 16,医学博士,博士; Tomohiro Matsumoto 17,医学博士,DDS,博士;富米娜·奥里哈拉(Fumina Orihara)17,马里兰州; Toru Morikawa 18,医学博士; Toshi-Nori Nishizawa 19,医学博士; Yoji Hoshina 13,医学博士; Yu Yamamoto 20,医学博士; Yuichiro Matsuo 21,MPH,医学博士; Yuto Unoki 22,医学博士; Hirofumi Kimura 22,医学博士; Midori Tokushima 23,马里兰州; Satoshi Watanabe 24,MBA,医学博士;马里兰州的高玛塞托24; Fumio Otsuka 4,医学博士,博士; Yasuharu Tokuda 25、26,MPH,MD,PHD
PEI Z,Deng K,Xu C,ZhangS。减数分裂阻滞和恢复卵母细胞发育和成熟的分子调节机制。再生生物内分泌。2023年10月2日; 21(1):90。Rabbani M,Zheng X,Manske GL,Vargo A,Shami AN,Li JZ,Hammoud SS。解码精子发生程序:转录组分析的新见解。Annu Rev Genet。2022 11月30日; 56:339-368。Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。细胞开发。2023年9月; 175:203865。Coxir SA,Costa GMJ,Santos CFD,Alvarenga Rlls,Lacerda SMDSN。从体内到体外:探索人配子发生的关键分子和细胞方面。嗡嗡声单元。2023 Jul; 36(4):1283-1311。Vargas LN,Silveira MM,Franco MM。表观遗传重编程和体细胞核转移。方法mol biol。2023; 2647:37-58。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。 雄科。 2023 Jul; 11(5):918-926。 Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。 女性的卵子发生:从分子调节途径和母体年龄到干细胞。 int J Mol Sci。 2023 Apr 6; 24(7):6837。 Hermann BP,Oatley JM。 简介:为什么以及如何研究精子发生和精子干细胞。 方法mol biol。 2023; 2656:1-6。 EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。McCarrey Jr。表观遗传启动作为精子干细胞命运预先确定的机制。雄科。2023 Jul; 11(5):918-926。Krajnik K,Mietkiewska K,Skowronska A,Kordowitzki P,Skowronski MT。女性的卵子发生:从分子调节途径和母体年龄到干细胞。int J Mol Sci。2023 Apr 6; 24(7):6837。Hermann BP,Oatley JM。简介:为什么以及如何研究精子发生和精子干细胞。方法mol biol。2023; 2656:1-6。EUR UROL重点。 2023 JAN; 9(1):46-48。 细胞开发。 2023年9月; 175:203865。EUR UROL重点。2023 JAN; 9(1):46-48。细胞开发。2023年9月; 175:203865。Ramsoomair CK,Alver CG,Flannigan R,Ramasamy R,Agarwal A.精子干细胞和体外精子生成:我们离碎屑上的人睾丸有多远?Trost N,Mbengue N,Kaessmann H.哺乳动物精子发生的分子进化。Davis GM,Hipwell H,Boag PR。 秀丽隐杆线虫中卵子发生。 性爱。 2023; 17(2-3):73-83。 Irie N,Lee SM,Lorenzi V,Xu H等。 DMRT1调节人类种系承诺。 NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Davis GM,Hipwell H,Boag PR。卵子发生。性爱。2023; 17(2-3):73-83。Irie N,Lee SM,Lorenzi V,Xu H等。DMRT1调节人类种系承诺。NAT细胞生物。 2023年10月; 25(10):1439-1452。 Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。NAT细胞生物。2023年10月; 25(10):1439-1452。Jabari A,Gholami K,Khadivi F等。 使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。 Int J Biol Macromol。 2023 Apr 30; 235:123801。 Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。 Adv Biol(Weinh)。 2023 Jul; 7(7):E2200322。 Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Jabari A,Gholami K,Khadivi F等。使用琼脂糖和层粘连蛋白的杂化水凝胶,在体外完全分化了人类精子干细胞与形态精子。Int J Biol Macromol。2023 Apr 30; 235:123801。Robinson M,Haegert A,Li YY,Morova T,Zhang Ayy,Witherspoon L,Hach F,Willerth SM,FlanniganR。与人诱导的多能干细胞的周围细胞类肌动物样细胞的分化。Adv Biol(Weinh)。2023 Jul; 7(7):E2200322。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。 Sertoli细胞是精子发生的干细胞因子的来源。 开发。 2023 3月15日; 150(6):DEV200706。 Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Peng YJ,Tang XT,Shu HS,Dong W,Shao H,Zhou Bo。Sertoli细胞是精子发生的干细胞因子的来源。开发。2023 3月15日; 150(6):DEV200706。Seita Y,Cheng K,McCarrey JR等。 使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。 Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Seita Y,Cheng K,McCarrey JR等。使用诱导的多能干细胞有效地产生果果果果果原始生殖细胞样细胞。Elife。 2023 JAN 31; 12:E82263。 seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。 方法mol biol。 2023; 2656:145-159。Elife。2023 JAN 31; 12:E82263。seita Y,Hwang YS,Sasaki K.人类繁荣的发育从人类诱导的多能干细胞中重建。方法mol biol。2023; 2656:145-159。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。 人类原始卵泡形成过程中的细胞 - 细胞相互作用。 生命科学联盟。 2023 8月29日; 6(11):E202301926。Czukiewska SM,Fan X,Mulder AA,Van der Helm T等。人类原始卵泡形成过程中的细胞 - 细胞相互作用。生命科学联盟。2023 8月29日; 6(11):E202301926。
交互设计师对物理延伸人体的机会越来越感兴趣。例如,设计师已经开发出系统,当用户现有的机械臂忙碌时,可以为用户提供一对额外的机械臂(Sasaki 等人,2017 年),或者当用户现有的手已经拿了其他东西时,可以为用户提供一只额外的手(Leigh 和 Maes,2016 年)。这些系统反映了更广泛的以身体为中心(Mueller 等人,2018 年)的人机交互趋势,其特点是计算机器和人体之间更紧密的集成(以及随之而来的融合)(Mueller 等人,2020 年)。到目前为止,这种集成的预期好处大多是工具性的,这表明由此产生的融合可以帮助人们更高效地完成任务,就像上面提到的手臂和手的例子一样。然而,一些系统正在出现,它们超越了任务支持,专注于体验方面。一个例子是戴在头上的交互式耳朵系统(Necomimi,2021 年)。佩戴者的耳朵会根据他们的情绪状态摆动,这是通过跟踪他们的大脑活动来捕捉的。目标用户群是 Cosplay 社区(Cosplay 是“costume play”的混合词,指的是“亚文化,其成员模仿极客媒体中的角色”,使用引人注目的服装和时尚配饰——这些服装和配饰越来越多地被商业化设计,例如 Cosgear (2021)——
尽管有这些重要的进步,但仍存在关键的需求,将这些新技术以外的新技术部署到与人类相关的大动物模型物种中(O'Shea等,2017)。非人类灵长类动物(NHP)是在这方面的特别重要的模型物种,具有大脑结构和功能以及复杂的认知和行为能力,与人类高度相似(Capitanio和Emborg,2008; Phillips et al。,2014; Roelfsema; Roelfsema and Treue and Treue,2014)。此外,基因组编辑的最新进展正在迅速使NHPS可行的人类疾病遗传模型(Sato和Sasaki,2018年)。因此,最新的光学技术从啮齿动物转移到行为NHP的转移有望在阐明健康和异常人类行为的临床相关神经活动中发挥关键作用。成功地应用钙成像在NHP中的开发很慢。特别是,使用常规病毒表达NHP脑中遗传编码的钙指标的困难(Sadakane等,2015a)和由较大体积NHP大脑运动引起的成像伪像(Trautmann等人,2021年; Choi等,2018,2018年)已证明最具挑战性。此外,与啮齿动物相比,NHP具有更成熟的免疫系统,需要复杂的手术策略和神经植入物硬件,并且在可用于试验和错误技术开发的动物总数上存在局限性(Phillips等人,2014年)。
2) Tsao JY、Chowdhury S、Hollis MA、Jena D、Johnson NM、Jones RJ、Kaplar S、Rajan、Van de Walle CG、Bellotti E、Chua R、Coltrin R、Cooper ME、Evans KR、Graham S、Grotjohn ER、Heller M、Higashiwaki M、Islam MS、Juodawlkis PW、Khan Khan、AD Koehler、JH Leach、UK Mishra、Nemanich RJ、Pilawa-Podgurski RCN、Shealy JB、Sitar Z、Tadjer MJ、Witulski AF、Wraback M 和 Simmons JA,Advanced Electronic Materials 4 [1],1600501 (2018)。 3)M. Higashiwaki、K. Sasaki、H. Murakami、Y. Kumagai、A. Koukitu、A. Kuramata、T. Masui 和 S. Yamakoshi,《半导体科学与技术》31 [3],034001(2016 年)。 4) Y. Yao, R. Gangireddy, J. Kim, KK Das, RF Davis 和 LM Porter,《真空科学与技术杂志》B 35 [3], 03D113 (2017)。 5) Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao 和 M. Liu, Applied Physics Letters 110 [9], 093503 (2017)。 6)Ahn S.、Ren F.、Yuan L.、Pearton SJ 和 Kuramata A.,ECS 固体科学与技术杂志 6 [1],P68(2017)。 7)M. Higashiwaki、K. Sasaki、A. Kuramata、T. Masui 和 S. Yamakoshi,Applied Physics Letters 100 [1],013504 (2012)。 8) M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui 和 S. Yamakoshi, 应用物理快报 103 [12], 123511 (2013)。 9)WS Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. (Grace) Xing, A. Seabaugh, W. Haensch, CV de Walle, Z. Galazka, M. Albrecht, R. Fornari 和 D. Jena, 应用物理快报 104[20], 203111 (2014). https://doi.org/10.1016/S0022-5376(02)00011-0 , Google 学术 Crossref , CAS 10. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira 和 S. Fujita, Applied Physics Express 1 [1], 011202 (2008)。 11)W.-Y. Kong,G.-A.吴,K.-Y.王,T.-F.张 Y.-F.邹博士王和 L.-B. Luo,Advanced Materials 28[48],10725 (2016)。 12) X. Chen、K. Liu、Z. Zhang、C. Wang、B. Li、H. Zhao、D. Zhao 和 D. Shen,ACS Appl.媽媽。接口 8[6], 4185 (2016)。应用物理快报 112[3], 032108 (2018) A. Kyrtsos, M. Matsubara 和 E. Bellotti。 14)Pearton SJ、Yang J、Cary IV、Ren F、Kim J、Tadjer MJ 和 Mastro MA,《应用物理评论》5[1],011301(2018)。 15) Y. Su, D. Guo, J. Ye, H. Zhao, Z. Wang, S. Wang, P. Li 和 W. Tang,《合金与化合物杂志》782, 299 (2019)。 16) Z. Cheng、F. Mu、T. You、W. Xu、J. Shi、ME Liao、Y. Wang、K. Huynh、T. Suga、MS Goorsky、X. Ou 和 S. Graham,ACS Appl.媽媽。接口 12[40], 44943 (2020)。 17)C.-H. Lin, N. Hatta, K. Konishi, S. Watanabe, A. Kuramata, K. Yagi 和 M. Higashiwaki, Applied Physics Letters 114 [3], 032103 (2019)。 https://doi.org/10.1103/PhysRevLett.116.141602 , Google Scholar Crossref 18. T. Matsumae、Y. Kurashima、H. Umezawa、K. Tanaka、T. Ito、H. Watanabe 和 H. Takagi。 19) P. Sittimart、S. Ohmagari、T. Matsumae、H. Umezawa 和 T. Yoshitake,AIP Advances 11 [10],105114 (2021)。 20) Y. Xu, F. Mu, Y. Wang, D. Chen, X. Ou 和 T. Suga, Ceramics International 45[5], 6552 (2019)。 21)W. Hao,Q. He,X. Zhou, X. Zhao, G. Xu 和 S. Long, 2022 IEEE 第 34 届国际功率半导体器件和集成电路研讨会 (ISPSD) (2022) 第 105 页。22) J. Zhang, P. Dong, K. Dang, Y. Zhang, Q. Yan, H. Xiang, J. Su, Z. Liu, M. Si, J. Gao, M. Kong, H. Zhou 和 Y. Hao, Nature Communications 13 [1], 3900 (2022)。
•saito K.福山先天性肌肉营养不良。2006年1月26日[更新于2019年7月3日]。in:Adam MP,Feldman J,Mirzaa GM,Pagon RA,Wallace SE,Amemiya A,Editors.genereviews(R)[Internet]。西雅图(WA):西雅图华盛顿大学; 1993-2025。 可从http://www.ncbi.nlm.nih.gov/books/nbk1206/引用(https://pubmed.ncbi.nlm.nih.gov/20301385) Tachikawa M,Wang F,Nagai Y,Taniguchi K,Taniguchi M,Sunada Y,Terashima T,Endo T,Matsumura K.Fukuyama-type先天性肌营养不良症(FCMD)Andalpha-delpha-dyalpha- dystroglycanopathy。 Anmit Anom(Kyoto)。 2003 Jun; 43(2):97-104。 doi:10.1111/j。 1741-4520.2003.tb01033.x。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/12 893968) • Yoshioka M, Higuchi Y, Fujii T, Aiba H, Toda T. Seizure-genotype relationshipin Fukuyama-type congenital muscular dystrophy. 大脑开发。 2008 JAN; 30(1):59-67.DOI:10.1016/j.braindev.2007.05.012。 Epub 2007年6月26日。 引用PubMed(https://pu bmed.ncbi.nlm.nih.gov/17597323)•Yoshioka M,BurokiS。 Am J Med Genet。 1994年11月15日; 53(3):245-50。doi:10.1002/ajmg.1320530309。 PubMed的引用(https://pubmed.ncbi.nlm.nih .gov/7856660)西雅图(WA):西雅图华盛顿大学; 1993-2025。可从http://www.ncbi.nlm.nih.gov/books/nbk1206/引用(https://pubmed.ncbi.nlm.nih.gov/20301385) Tachikawa M,Wang F,Nagai Y,Taniguchi K,Taniguchi M,Sunada Y,Terashima T,Endo T,Matsumura K.Fukuyama-type先天性肌营养不良症(FCMD)Andalpha-delpha-dyalpha- dystroglycanopathy。Anmit Anom(Kyoto)。2003 Jun; 43(2):97-104。 doi:10.1111/j。 1741-4520.2003.tb01033.x。 Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/12 893968) • Yoshioka M, Higuchi Y, Fujii T, Aiba H, Toda T. Seizure-genotype relationshipin Fukuyama-type congenital muscular dystrophy. 大脑开发。 2008 JAN; 30(1):59-67.DOI:10.1016/j.braindev.2007.05.012。 Epub 2007年6月26日。 引用PubMed(https://pu bmed.ncbi.nlm.nih.gov/17597323)•Yoshioka M,BurokiS。 Am J Med Genet。 1994年11月15日; 53(3):245-50。doi:10.1002/ajmg.1320530309。 PubMed的引用(https://pubmed.ncbi.nlm.nih .gov/7856660)2003 Jun; 43(2):97-104。 doi:10.1111/j。1741-4520.2003.tb01033.x。Citation on PubMed (https://pubmed.ncbi.nlm.nih.gov/12 893968) • Yoshioka M, Higuchi Y, Fujii T, Aiba H, Toda T. Seizure-genotype relationshipin Fukuyama-type congenital muscular dystrophy.大脑开发。2008 JAN; 30(1):59-67.DOI:10.1016/j.braindev.2007.05.012。 Epub 2007年6月26日。 引用PubMed(https://pu bmed.ncbi.nlm.nih.gov/17597323)•Yoshioka M,BurokiS。 Am J Med Genet。 1994年11月15日; 53(3):245-50。doi:10.1002/ajmg.1320530309。 PubMed的引用(https://pubmed.ncbi.nlm.nih .gov/7856660)2008 JAN; 30(1):59-67.DOI:10.1016/j.braindev.2007.05.012。Epub 2007年6月26日。引用PubMed(https://pu bmed.ncbi.nlm.nih.gov/17597323)•Yoshioka M,BurokiS。Am J Med Genet。1994年11月15日; 53(3):245-50。doi:10.1002/ajmg.1320530309。PubMed的引用(https://pubmed.ncbi.nlm.nih .gov/7856660)