Scott D. Solomon 1 * , John W. Ostrominski 1 , Muthiah Vaduganathan 1 , Brian Claggett 1 , Pardeep S. Jhund 2 , Akshay S. Desai 1 , Carolyn SP Lam 3 , Bertram Pitt 4 , Michele Senni 5 , Sanjiv J . , Imran Zainal Abidin 9 , Marco Antonio Alcocer-Gamba 1 0 , John J. Atherton 11 , Johann Bauersachs 1 2 , Chang-Sheng Ma 1 3 , Chern-En Chiang 1 4 , Ovidiu Chioncel 1 5 , 1 Vijay Chopra , Jopra Sep 6 , Gerosop pathos 1 8 , Cândida Fonseca 1 9 , Grzegorz Gajos 20 , Sorel Goland 2 1 , Eva Goncalvesová 22 , Seok-Min Kang 23 , Tzvetana Katova 24 , Mikhail N. Kosiborod 25 , Gustav Latski 26 , Alex Puiski ard CM Linssen 28 , Guillermo Llamas-Esperón 29 , Vyacheslav Mareev 30 , Felipe A. Martinez 3 1 , Vojtˇech Melenovsk´y 32 , Béla Merkely 33 , Savina Nodari 34 , Mark C. Petrie 2 , Clara Saria 35 , Saria Saria , Naoki Sato 37 , Morten Schou 38 , Kavita Sharma 39 , Richard Troughton 40 , Jacob A. Udell 4 1 , Heikki Ukkonen 42 , Orly Vardeny 43 , Subodh Verma 44 , Dirk von Lewinski 45 , Leon Bir Yiv Ghan 46 , Shemet Ghan . lley Zieroth 48 , James Lay-Flurrie 49 , Ilse van Gameren 50 , Flaviana Amarante 5 1 , Prabhakar Viswanathan 52 , and John JV McMurray 2
(1) D. Evans,“物联网:互联网的下一次发展将如何改变一切”,(白皮书),https://www。cisco.com / c / dam / global / ru_ua / assets / pdf / iot-ibsg-0411final。pdf(访问日期 2020-01-04)。(2) G.E.Moore,“将更多组件塞入集成电路”,Proc.IEEE,卷。86,号。1,页。82-85,1998 年 1 月,电子学,卷。38,号。8,页。114-117,1965 年 4 月。(3) A. Chien 和 V. Karamcheti,“摩尔定律:第一个结束和一个新的开始”,计算机,卷。46,页。48-53,2013 年 12 月。( 4 ) T. Hanyu、T. Endoh、Y. Ando、S. Ikeda、S. Fukami、H. Sato、H. Koike、Y. Ma、D. Suzuki 和 H. Ohno,“自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 技术”,载于《非易失性存储器和存储技术的发展》,B. Magyari-Kope 和 Y. Nishi 编辑,页。237-281,第 7 章,Woodhead Publishing 电子和光学材料系列,第 2 版,2019 年。( 5 ) 羽生貴弘,“MTJ / MOSハイブリッド回路技术 ”,応用物理 ,vol.86,no.8,pp.662-665,2017 年 8 月。( 6 ) T. Hanyu、T. Endoh、D. Suzuki、H. Koike、Y. Ma、N. Onizawa、M. Natsui、S. Ikeda 和 H. Ohno,“使用基于 MTJ 的 VLSI 计算的待机无电源集成电路”,Proc.IEEE,vol.104,
尽管有这些重要的进步,但仍存在关键的需求,将这些新技术以外的新技术部署到与人类相关的大动物模型物种中(O'Shea等,2017)。非人类灵长类动物(NHP)是在这方面的特别重要的模型物种,具有大脑结构和功能以及复杂的认知和行为能力,与人类高度相似(Capitanio和Emborg,2008; Phillips et al。,2014; Roelfsema; Roelfsema and Treue and Treue,2014)。此外,基因组编辑的最新进展正在迅速使NHPS可行的人类疾病遗传模型(Sato和Sasaki,2018年)。因此,最新的光学技术从啮齿动物转移到行为NHP的转移有望在阐明健康和异常人类行为的临床相关神经活动中发挥关键作用。成功地应用钙成像在NHP中的开发很慢。特别是,使用常规病毒表达NHP脑中遗传编码的钙指标的困难(Sadakane等,2015a)和由较大体积NHP大脑运动引起的成像伪像(Trautmann等人,2021年; Choi等,2018,2018年)已证明最具挑战性。此外,与啮齿动物相比,NHP具有更成熟的免疫系统,需要复杂的手术策略和神经植入物硬件,并且在可用于试验和错误技术开发的动物总数上存在局限性(Phillips等人,2014年)。
[1] C. M. Bender和S. Boettcher,具有P T对称性的非热汉尔顿人的真实光谱,物理。修订版Lett。 80,5243(1998)。 [2] W. D. Heiss,特殊点的物理学,J。Phys。 A 45,444016(2012)。 [3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。 A 42,153001(2009)。 [4] M. V. Berry,捷克的非赫米特式脱生物的物理学。 J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。80,5243(1998)。[2] W. D. Heiss,特殊点的物理学,J。Phys。A 45,444016(2012)。[3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。A 42,153001(2009)。[4] M. V. Berry,捷克的非赫米特式脱生物的物理学。J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。J. Phys。54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。54,1039(2004)。[5] W. D. Heiss,非官员运营商的特殊点,J。Phys。A 37,2455(2004)。[6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。修订版Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。77,570(1996)。[7] M.-A。Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。[8] H. Hodaei,M.-A。Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。[9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X.[10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M.Photonics 8,524(2014)。[11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。物理。社区。10,394(2014)。 [12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。 12,6297(2021)。 [13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。 修订版 x 6,021007(2016)。 [14] W. Tang,X。Jiang,K。Ding,Y.-X. Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。10,394(2014)。[12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。12,6297(2021)。[13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。修订版x 6,021007(2016)。[14] W. Tang,X。Jiang,K。Ding,Y.-X.Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Xiao,Z.-Q.Zhang,C。T。Chan和G.[15]物理。16,747(2020)。[16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X.社区。12,7201(2021)。[17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。natl。学院。SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。SCI。美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。美国117,29561(2020)。[18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。[19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。修订版Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Lett。124,086801(2020)。修订版x 9,041015(2019)。[20] K. Kawabata,K。Shiozaki,M。Ueda和M. Sato,非热物理学中的对称性和拓扑,物理学。
Aeropan® 是一种专为那些需要在尽可能小的空间内实现最高程度隔热的建筑结构隔热而设计的面板。它由纳米技术气凝胶绝缘体与玻璃纤维增强透气聚丙烯膜组成,旨在实现低厚度隔热效果。 Aeropan® 厚度为 10 毫米,热导率为 0.015 W/mK,可帮助您通过恢复民用、商业和住宅建筑中的空间来减少能量分散。该面板的特性——最小的热导率、柔韧性和抗压性、疏水性和易于安装——使其成为确保新建和翻新结构最大程度隔热的不可或缺的产品。它是用于外部围墙和内墙、拱腹、窗框、阁楼以及解决热桥的理想产品。 Aeropan® 是外部和内部翻修、建筑修复和受建筑限制且需要最大限度生活舒适度的历史建筑的最佳选择。
成员:D.G.Abdelsalam Ibrahim (NIS)、M. Aksoulou (UME)、A. Arce Criado (CEM)、M. Ashar (UME)、F. Assi (METAS)、A. Baker (NMIA)、P. Balling (CMI)、A. Balsamo (INRIM)、Y. Bitou (NMIJ/AIST)、H. Bosse (J.C.C.C.C.)、C. L. Carzo (CPTC)、CIPM)、T. Coveney (NPL)、P. Cox (NMIA)、M. Motta de Souza (INMETRO)、R. Dixson (NIST)、B. Eves (NRC)、R. Fira (SMU)、R. França (INMETRO)、S. Gagné (NRC)、A. Hirai (NMIJ/AIST)、Y. Hung (FgNIM)、Hunt (N.M.S.B.)、Hung (N.M.S.B.)。 Kang(KRISS)、N. Kononova(VNIIM)、R. Koops(VSL)、P. Křen(CMI)、O. Kruger(NMISA)、A. Küng(METAS)、A. Lassila(MIKES)、R. Le Targat(LNE-SYRTE)、I.D.Leroux (NRC)、A. Lewis (NPL)、C. Lisdat (PTB)、M. Matus (BEV)、M.J.T.Milton(BIPM 主任)、A. Moskalev(VNIIM)、J.J.帕克(KRISS),医学博士Pérez Hernandez (CEM)、M. Pisani (INRIM)、J.-A.Saldago(LNE)、O. Sato(NMIJ/AIST)、D. Sawyer(NIST)、Y. Shi(NIM)、J.R. Stoup(NIST),M.R.Viliesid Alsonso(CENAM)、S. Wang(NMC、A*STAR)、J. Wu(NIM)、D. Xu(NMC、A*STAR)、A. Yacoot(NPL)、S. Yu(NMC、A*STAR)、G. Zechner(BEV)、M. Zucco(INRIM)。
日期:2019年1月15日:Nagoya City University的药学学院的神经药理学特殊研讨会:Uchitani Masafumi隶属关系:演员/电影导演标题:我无法理解,除非我绕行 - 除非我进行了一场挑战 - 除非我进行了一场斗争 - 与药物成瘾的战斗 - 护理领域:Neurophivef Field:Neuropharmanology of Neuropharmanology of Neuropharmology of Neuropharmology jim tocile jim KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM KIM IREDERIENIRE:2019年1月:2019年Kazutetsu日期:2019年1月19日讲座:第50 Aichi县糖尿病治疗研究小组讲师:Koyama Sachiko隶属关系:Nagoya第一红十字会医院药理学系职位:如何处理糖尿病治疗?与接受癌症治疗的患者相互作用:Ishikawa Hiroshi隶属关系:Shizuoka省Shizuoka癌症中心标题:癌症化学治疗期间的糖尿病患者的药物干预:OHASHI KEN KEN KEN KEN AFRITIANIT Garden City Premium Nagoya Lucent Tower职业:Kikuchi Chigusa等。 1月25日,2019年1月25日:日本药品学会Tokai分会的特别讲座:副教授Hirota Junji隶属关系:东京技术研究所:静脉曲张神经元护理领域的命运机制:Pathobio other Field:Pathobiocrist内戈亚市大学医学中心医院医院标题:癫痫的药物治疗:Makino Toshiaki日期:2019年1月27日至28日讲座:第三名纳戈亚城市大学 - 里卡妇女大学联合研讨会地点:Nagoya City University,Nagoya City University,Sato Masafumi
细胞类型在人体内转换,通过分子谱识别,并导致人类疾病(Regev et al., 2017)。上皮-间质转化(EMT)被定义为细胞表型从上皮型变为间质型,N-钙粘蛋白和波形蛋白高表达,发生在正常细胞和癌细胞等各种条件下(Tanabe, 2015a; Noh et al., 2017)。EMT 在细胞过程中发挥各种作用,如迁移、细胞外基质 (ECM) 改变和细胞凋亡 (Song and Shi, 2018; Peixoto et al., 2019)。EMT 还能驱动细胞可塑性并导致肿瘤内异质性 (Krebs et al., 2017; Wahl and Spike, 2017)。癌症在不同恶性阶段存在实体特异性差异和群体多样性 ( Dawood 等,2014;Fatima 等,2019 )。癌症干细胞 (CSC),即癌症中的干细胞群体,可通过 CD44 等标志物检测,而迄今为止尚未确定 CSC 的独特标志物 ( Yan 等,2015;Ghuwalewala 等,2016 )。癌症产生的两种可能性,例如随机模型和层次模型,已被长期讨论,但仍然存在争议。CSC 由具有干细胞样特征的癌细胞组成,这些癌细胞具有自我更新、在癌细胞中分化的能力 ( Sato 等,2016 )。此外,已知一些 CSC 群体具有 EMT 样细胞特征 ( Shibue and Weinberg,2017 )。 EMT 和 CSC 之间的潜在联系是癌症药物耐药性获得的关键,也是癌细胞可塑性的关键,癌细胞可塑性是指癌细胞转化为恶性细胞,反之亦然 ( Loret et al., 2019 )。要揭示癌症药物耐药性的机制,必须了解 EMT 和 CSC 的特征
通过胸部 X 光片进行预测:一项多中心研究 主要研究员:佐藤洋一 名古屋大学医学院 共同研究员:山本则夫 宫本整形外科医院 稻垣直哉 慈惠大学柏医院 家崎雄介 国立医院组织 名古屋医疗中心 高原俊介 兵库县立加古川医疗中心 尽管全世界患有骨质疏松症的患者数量正在增加,但目前的诊断和治疗还不够充分。在这项研究中,我们开发了一个深度学习模型来通过胸部 X 光片预测骨矿物质密度 (BMD) 和 T 值,胸部 X 光片是最常见、最容易获得且成本最低的医学影像检查方法之一。本研究中使用的数据集包含 17,899 张图像,这些图像对应于 2010 年至 2021 年期间在六家医院接受双能 X 射线吸收仪 (DXA) 和胸部 X 光检查的 10,102 名患者。对于学习标签,我们使用 (1) 髋部和腰椎的 BMD (g/cm2) 和 (2) 基于髋部或腰椎 T 分数的诊断(正常、骨质减少和骨质疏松症)。然后,我们通过胸部 X 光片、年龄和性别的集成学习来训练深度学习模型,以使用回归和 T 分数进行多类分类来预测 BMD。我们评估了以下两个指标来评估深度学习模型的性能:(1) 预测和真实 BMD 之间的相关性和 (2) 预测类别和真实类别之间 T 分数的一致性。BMD 预测的相关系数为髋部 = 0.75,腰椎 = 0.63。正常、骨质减少和骨质疏松诊断的 T 分数预测曲线下面积分别为 0.89、0.70 和 0.84。这些结果表明,所提出的深度学习模型可能适用于通过预测胸部 X 光片的 BMD 和 T 分数来筛查骨质疏松症患者。
基因组编辑通过提供更快,更具成本效益的方法来在特定靶位点上修改细菌基因组,从而显着提高。基因组编辑很大程度上是基于诱导所需表型的遗传变异和筛查/选择(Pines等,2015)。It is now possible to target spe- cific genomic sites using indirect techniques such as programmable nucleases (CRISPR /Cas9, Zinc Finger Nucleases, and Transcription Activator-Like Effector Nucleases (TALENS)) ( Esvelt and Wang, 2013 ) and more direct methods such as multiplex automated genome engi- neering (MAGE) ( Court et al., 2002 ; Wang et al., 2009; Wang等人,2012年;具体来说,法师使用带有所需突变的单链寡核苷酸,这些突变被重新组合到基因组中,并依赖于甲基指导的不匹配修复系统的成功失活。这最终导致背景突变率提高了两个数量级,并且脱靶突变的积累影响了未来的表型研究(CS O等人,2020年)。Nyerges等。(Nyerges等,2016)随后修改了此方法(Portmage),以克服MAGE的局限性,从而创建具有温度控制的显性负MUTL等位基因,该质粒仅在寡核苷酸整合过程中限制DNA修复以及λ红重组酶酶。这减少了细菌易受突变率增加的时间,从而降低了脱靶效应。在这里我们使用有些人甚至声称该系统的使用基本上可以消除脱靶效应(Nyerges等,2016; cs; org org o et et al。,2020)。许多人现在已经使用这些方法将新型表型与特定的核苷酸变化相关联,尽管没有报告脱靶突变的报道(Russ等,2020; Tiz等,2019; Moura de Sousa等,2017; Sato等,2018; Spohn等,2018; Spohn等,2019)。