课程描述 本课程专为具有材料科学与工程、物理学、地球科学、化学、生命科学或相关领域背景的学生而设计。本课程专门为以下学生设计:a) 学习 SEM 成像、衍射和光谱学的基本原理;b) 了解电子-样本相互作用、信号产生和检测;c) 正确解释各种类型的图像和相关的 X 射线光谱和衍射图案;d) 掌握适当的技能来解决实际材料的各种图像和微分析问题。本课程的学习成果包括 i) 理解关键概念和基本原理,ii) 正确选择适当的电子束参数(例如电压、电流、探针尺寸和焦深)以研究不同类型的材料(例如导体、半导体、绝缘体或聚合物),以及 iii) 了解如何消除图像、光谱和衍射图案中的伪影。希望学生专注于解决问题的技能,并熟练地利用现代 SEM 来解决具有挑战性的材料研究问题和产品开发问题。课程内容 本课程首先介绍电子束-样品相互作用,以及此类相互作用如何产生不同类型的有用信号,这些信号携带样品特定信息(形态、结构、元素分布等)。然后将广泛讨论影响各种类型电子探针形成的参数(例如高分辨率成像与微分析)。接下来将讨论不同类型的电子和X射线探测器以及如何使用这些探测器形成可解释的图像和/或光谱。在学期的第一部分,重点是理解探针形成和图像解释的基本原理,重点是如何为特定类型的样品选择合适的电子光学参数。在学期的第二部分,我们将讨论通过X射线对异质样品进行定性和定量成分分析、通过电子背散射衍射(EBSD)图案获取晶体材料的结构信息,以及如何使用低电压(低至数十伏)或可变压力SEM对非导电或湿样品进行成像。将讨论双光束 FIB-SEM(电子和聚焦离子束)显微镜和现代 SEM 中的原子分辨率成像。讲座时间:周一/周三下午 12:00-1:15;地点:CVAC 333(和 ASU Online);讲师:Jingyue (Jimmy) Liu 博士(https://isearch.asu.edu/profile/1816322);办公室:PSF 432A;电子邮件:jliu152@asu.edu。
摘要 扫描透射电子显微镜 (STEM) 技术在过去二十年中取得了重大进步。像差校正技术、超高能量分辨率单色仪和最先进的探测器/相机的进步使 STEM 成为从微观到原子尺度研究材料化学和结构的重要工具。这种表征技术对于理解和表征下一代先进材料中铁性材料特性的起源非常有价值。工程材料的许多独特性质,例如铁电性、压电性和铁磁性,都与其原子级组成和结构密切相关。STEM 能够直接观察这些结构特征,从而与宏观特性建立联系。从这个角度来看,我们概述了先进的 STEM 技术在研究铁性材料特性起源中的应用,并讨论了进一步利用 STEM 技术的潜在机会。
摘要 高分相机(GFXJ)是我国第一款自主研发的机载三线阵CCD相机,设计飞行高度2000m时,对地面三维点的GSD为8cm、平面精度为0.5m、高程精度为0.28m,满足我国1:1000比例尺测绘要求。但GFXJ原有的直接定位精度在平面方向约为4m,高程方向约为6m。为满足地面三维点精度要求,提高GFXJ直接定位精度,本文对GFXJ几何定标进行了深入研究。本次几何标定主要包括两部分:GNSS杆臂与IMU杆轴失准标定、相机镜头与CCD线畸变标定。首先,简单介绍GFXJ相机的成像特性。然后,建立GFXJ相机的GNSS杆臂与IMU杆轴失准标定模型。接下来,建立基于CCD视角的GFXJ镜头与CCD线畸变分段自标定模型。随后,提出迭代两步标定方案进行几何标定。最后,利用在黑龙江省松山遥感综合场和鹤岗地区获取的多个飞行区段进行实验。通过标定实验,获得了GNSS杆臂和IMU视轴失准的几何标定值。为前向、下视和后向线阵独立生成了可靠的CAM文件。实验表明,提出的GNSS杆臂和IMU视轴失准标定模型和分段自标定模型对GFXJ相机具有良好的适用性和有效性。提出的两步标定方案可以显著提高GFXJ相机的几何定位精度。GFXJ原始直接地理定位精度在平面方向约为4 m,在高程方向约为6 m。平面精度约为0.2 m,高程精度小于0.28 m。此外,本文建立的定标模型及定标方案可为其他机载线阵CCD相机的定标研究提供参考。利用GNSS杠杆臂和IMU视轴失准校准值以及CAM文件,GFXJ相机的定位精度可以在仅使用几个地面控制点进行空中三角测量后满足3D点精度要求和2000 m飞行高度1:1000的测绘精度要求。
机载激光扫描 (ALS) 是一种遥感技术,因其在自然资源管理中的适用性而闻名。通过使用激光技术量化植被和底层地形的三维结构,ALS 已被广泛用于增强林业和生态领域的地理空间知识。植被的结构描述提供了一种估计一系列生态相关属性的方法,例如高度、体积和地上生物量。高效处理大型、通常技术复杂的数据集需要专用的算法和软件。ALS 作为改善生态理解的工具的持续前景通常取决于用户创建的工具、方法和方法。由于 ALS 在学术、政府和私营部门社区中的普及,再加上满足对开放和可访问数据日益增长的需求,ALS 社区认识到免费和开源软件 (FOSS) 的重要性以及用户定义的工作流程的重要性。在此,我们描述了 lidR 包开发背后的理念。 lidR 在 R 环境中使用 C/C++ 后端实现,是一款免费的开源跨平台软件,旨在为使用 ALS 数据的林业和生态社区提供简单而富有创意的处理工作流程。我们回顾了研究界目前使用的算法,并在此过程中提高了人们对当前成功和挑战的认识
需要确定生物组织切片中的主要(C,H,N和O)含量,这是建立了定量离轴扫描传输离子显微镜(OA-stim)的形式主义。这可以与同时进行弹性反向散射光谱(EB)一起使用,以提供定量的主要元素组成和厚度信息。作为工作的一部分,实施了具有一个自由参数的经验预测指标。预测变量值与高精度文献数据非常紧密。对于2 MeV P – 12 C的弹性散射在正角≤45◦使用插值程序来确定与Rutherford Cross截面的相对偏差确定为≤6。4%。插值基于库仑场,角动量量子数和核结构依赖性核穿透因子。最后,讨论了同时OA-stim和EBS数据的定量组合。
在本文中,我们描述了为使公平规定的扫描隧道显微镜(STM)图像的科学档案所开发的数据管理实践和服务。作为第一步,我们提取了数据集的每个图像的仪器元数据以创建一个结构化数据库。然后,我们通过利用人类注释,机器学习技术和仪器元数据过滤的管道来丰富这些元数据的信息。要视觉探索图像和元数据,以及提高数据集的可访问性和可用性,我们开发了“ STM Explorer”作为集成在Trieste Advanced Data Services(TRIDAS)网站中的Web服务。在这些数据服务和工具的基础上,我们提出了W3C PROV标准的实现,以描述STM图像的出处元数据。
扫描电子显微镜 (SEM) 是一种成像和分析技术,用于表征微米级和纳米级材料的结构和化学性质。目前,它被电池材料和电池制造商广泛用于材料研发、质量控制和故障分析过程中的有效表征工具。用于制造电池的材料差别很大;例如,隔膜材料是电绝缘的并且对光束敏感,而锂金属阳极样品是导电的并且对空气极为敏感。科学家和工程师面临着各种挑战,需要准确提取不同电池样品的结构信息。因此,SEM 制造商应为电池领域提供有关电池表征的样品处理和成像策略的指导。
摘要:脑电图 (EEG) 引导的自适应神经刺激是一种创新的非侵入性闭环脑刺激技术,它使用由个体节律性脑电图成分调制的在线视听刺激。然而,提高其有效性的机会是一项具有挑战性的任务,需要进一步研究。本研究旨在通过实验测试是否有可能通过共振扫描程序预先加强调节因子(受试者的脑电图)来提高脑电图引导的自适应神经刺激的效率,即 LED 光刺激,频率在主要脑电图节律范围内(4-20 Hz)逐渐增加。36 名处于考试压力状态的大学生被随机分配到两个匹配组。一组仅接受脑电图引导的自适应神经刺激,而另一组则接受共振扫描和脑电图引导的自适应神经刺激的组合。使用刺激后心理生理指标相对于初始水平的变化。虽然两种刺激都导致脑电图节律功率增加,同时单词识别测试中的错误数量减少,情绪失调程度降低,但这些变化仅在初步共振扫描实验中达到显著水平。共振扫描增加了大脑对随后的脑电图引导的自适应神经刺激的响应能力,可作为提高其效率的工具。所得结果清楚地表明,共振扫描和脑电图引导的自适应神经刺激相结合是实现压力个体认知改善迹象的有效方法。
摘要:在过去的几十年中,对半导体硅的激光消融进行了广泛的研究。在超短脉冲结构域中,无论是在FS尺度还是PS尺度上,硅的消融中的脉冲能量阈值都非常依赖于脉冲宽度。然而,在NS脉冲量表中,对脉冲宽度的能量阈值依赖性尚不清楚。这项研究阐明了NS NIR激光消融硅的相互作用能量依赖性。通过脉冲能量沉积速率确定消融或熔化的水平,该脉冲能量沉积速率与激光峰值成正比。较短的脉冲宽度高峰值功率可能会引起表面消融,而较长的脉冲宽度可能会诱导表面熔化。随着脉冲宽度从26增加到500 ns,消融阈值从5.63增加到24.84 j/cm 2。随着脉冲宽度从26增加到200 ns,熔化阈值从3.33增加到5.76 j/cm 2,然后一直保持恒定直至500 ns,最长的宽度。与较短的脉冲宽度不同,较长的脉冲宽度不需要较高的功率水平来诱导表面熔化,因为可以在较低的加热时间较长的脉冲宽度时诱导表面熔化。表面熔化的线宽度小于聚焦点尺寸;该线在缓慢的扫描速度下以连续线的形式出现,或者以高扫描速度以隔离点的形式出现。相比之下,从消融中的线宽度显着超过了聚焦的点大小。
光学成像系统(显微镜、望远镜或照相机)的分辨率可能受到镜头缺陷或错位(смещение)等因素的限制。然而,由于衍射的物理特性,任何光学系统的分辨率都有一个主要限制。分辨率性能达到仪器理论极限的光学系统被称为衍射极限。