摘要:最近,由于其在促进新的治疗策略的发展方面的优势,通过采用一种成本友好的方法并避免了严格的食品和药物药物(FDA)法规,因此最近在癌症中尤其是在癌症中获得了越来越多的兴趣。acriflavine(ACF)是FDA认可的分子,自1912年以来,已对具有抗菌,锥虫,抗病毒,抗菌和抗癌作用进行了广泛研究。ACF已显示可阻止固体和造血细胞的生长。的确,ACF充当各种蛋白质的抑制剂,包括DNA依赖性蛋白激酶C(DNA-PKC),拓扑异构酶I和II和II,低氧诱导因子1α(HIF-1α),除了它最近发现作为信号传输者和激活型Tran-crastion-sattran-crastion(Statsion-state)的抑制剂(STAT)的抑制剂。慢性髓样白血病(CML)是一种克隆骨髓增生性疾病,其特征在于组成型活性酪氨酸激酶BCR-ABL的表达。该蛋白质允许激活几种以其在细胞增殖和存活中的作用而闻名的信号通路,例如JAK/STAT途径。基于酪氨酸激酶抑制剂(TKIS)(例如伊马替尼(IM))的 CML治疗非常有效。 但是,有15%的患者与IM骨折,在某些情况下,有20-30%的患者具有抗性。 因此,我们建议在IM失败或与IM结合使用IM以改善IM的抗肿瘤效应后,在CML中重新利用ACF。 在这篇综述中,我们介绍了ACF的不同药理特性以及其抗白血病作用,以期在CML治疗中重新利用。CML治疗非常有效。但是,有15%的患者与IM骨折,在某些情况下,有20-30%的患者具有抗性。因此,我们建议在IM失败或与IM结合使用IM以改善IM的抗肿瘤效应后,在CML中重新利用ACF。在这篇综述中,我们介绍了ACF的不同药理特性以及其抗白血病作用,以期在CML治疗中重新利用。
基因表达的抽象调节是细胞生物学的重要组成部分。转录因子蛋白经常结合旋转启动位点上游的调节DNA序列,以促进RNA聚合酶的激活或抑制。研究实验室已经专门用于了解转录因子的转录调节网络,因为这些受调节的基因为宿主生物的生物学提供了重要的见解。各种体内和体外测定已被开发,以阐明转录调节网络。包括SELEX-SEQ和CHIP-SEQ在内的几种测定法捕获了结合DNA结合的转录因子,以确定首选的DNA结合序列,然后可以将其映射到宿主有机体的基因组以鉴定候选调节基因。在此方案中,我们描述了一种使用限制性核酸内切酶,保护,选择和放大式(REPSA)来确定兴趣转换因子的DNA结合序列的替代性迭代选择方法。与基于传统抗体的捕获方法相反,REPSA通过用IIS型限制性核酸内切酶来挑战结合反应来选择转录因子结合的DNA序列。耐裂解的DNA物种通过PCR扩增,然后用作下一轮REPSA的输入。重复此过程,直到通过凝胶电泳观察到受保护的DNA物种,这表明成功的REPSA实验。随后的REPSA选择的DNA的高通量测序以及伴随基序发现的epsa选择的DNA,可以使用扫描分析来确定转录因子共识结合序列和潜在的调节基因,并在确定生物体的转录调节网络方面提供了关键的第一个步骤。
小麦收获前发芽(PHS)会降低产量和籽粒质量,几乎在世界各地的小麦种植区都会发生(Vetch 等,2019)。一般而言,红粒小麦品种比白粒小麦品种对 PHS 的耐受性更强(Himi 等,2011)。此外,籽粒外皮的红色色素中含有原花青素,其抗氧化活性和自由基清除能力具有促进健康的功效。因此,培育优良红粒小麦品种是培育高产优质小麦的重要目标。R2R3-MYB 是植物中最大的转录因子家族之一,在调节植物发育、代谢和逆境反应中起着至关重要的作用。六倍体小麦的 R2R3-MYB 转录因子 Tamyb10 可激活黄酮类化合物生物合成基因,从而决定小麦粒的红色,并影响 PHS(Himi et al.,2011)。在大多数白小麦品种中,Tamyb10-A1a、Tamyb10-B1a 和 Tamyb10-D1a 基因存在大面积插入或缺失,从而破坏了 IRTKAL/IRC 基序和调控功能(Himi et al.,2011)。在 Tamyb10 基因中,Tamyb10-B1a 等位基因在近 88.6% 的面包小麦品系中发生 19 bp 的缺失;该缺失导致开放阅读框移码,并破坏了所产生的蛋白质(Dong et al.,2015;Himi et al.,2011)。鉴于 CRISPR/Cas9 诱导的突变通常在特定靶位点处为 +1/1 bp 插入/缺失 (Zhang et al., 2014 , 2016 ),我们可以恢复 Tamyb10-B1a 等位基因内的移码突变(由 19 bp
抽象目标:评估儿童和青少年饮食补充剂的叙述性评论。数据来源:2000年至2023年之间,使用了PubMed,Medline和Scielo数据库中的“饮食补充剂”,“儿童”和“青少年”术语,该术语在PubMed,Medline和Scielo数据库中使用,评估了人类的研究,该研究发表在Portuguese,英语,法语,法语和西班牙语中。数据综合:近几十年来,儿童和青少年饮食补充剂的使用有所增加。最常用的补充剂是维生素,矿物质,微量元素,蛋白质,氨基酸,褪黑激素,脂肪酸,益生菌和能量饮料。结论:尽管有特定的指示,但大多数情况下,医疗保健专业人员没有开处方。使用的原因有所不同。在儿童中,主要原因是针对感染,刺激生长和食物摄入量不佳,多种维生素和矿物质是最常用的补充剂。在青少年中,它们用于改善运动表现并获得“理想的身体”,蛋白质和氨基酸是最常使用的营养素。由于它们不受卫生机构的监管,并且在没有预先措施的情况下出售,因此他们的无监督使用可能导致剂量不足,不耐用或过量的风险。至于复合配方,或者在有多种营养素的制剂中可用时,错误的机会会增加。至关重要的是,儿科医生向父母和患者提供有关适应症,风险和收益的建议,并在必要时开处方。©2023由Elsevier Editora Ltda发布。代表Sociedade Brasileira de Pediatria。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
钩端螺旋体是导致钩端螺旋体病的致病细菌,这是一种世界范围内的人畜共患病。所有脊椎动物都可以被感染,某些物种像人类易受疾病的影响,而小鼠等啮齿动物具有抗性并成为无症状的肾载体。诱导性是隐形细菌,已知可以逃避几种免疫识别途径并抵抗杀死机制。我们最近发表说,钩端螺旋体可以在细胞内生存并退出巨噬细胞,避免了Xenophapy,这是一种自噬的病原体靶向形式。有趣的是,后者是经常被细菌KAKE的抗菌机制之一,以逃避宿主的免疫反应。在这项研究中,我们探讨了钩端螺旋体是否颠覆了自噬的关键分子参与者以促进感染。我们在胶噬细胞中表明,钩端螺旋体触发了自噬适应器p62在类似点状结构中的特定积累,而不会改变自噬型号。我们证明了钩端螺旋体诱导的p62积聚是一种被动机制,具体取决于通过TLR4/TLR2信号传导的钩端螺旋力毒力因子LPS信号。p62是一种中央多效性蛋白,也通过转移因子的易位介导细胞应激和死亡。我们证明了瘦素驱动的p62的积累诱导了转录因子NRF2的易位,这是抗氧化剂反应中的关键参与者。然而,钩端螺旋体感染的NRF2易位并未像抗氧化反应中所预期的那样导致,但抑制了炎性介质的生产,例如Inos/NOOS/NO,TNF和IL6。©2023作者。总体而言,这些发现突出了一种与LPS和p62/NRF2信号相关的新型无源细菌机制,该机制减少了炎症并有助于诱导性的隐身性。由Elsevier Masson SAS代表Pasteur Inster出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
目前尚不清楚链格孢属植物产生的复杂霉菌毒素混合物在生理条件下是否具有雌激素作用和/或遗传毒性,特别是考虑到它与食品中的抗氧化剂同时存在。因此,本研究重点探讨了 N-乙酰半胱氨酸 (NAC) 作为代表性抗氧化 SH 供体对特征性链格孢毒素 alter-nariol (AOH)、altertoxin-II (ATX-II) 和链格孢培养物的复杂提取物 (CE) 上述毒理学终点的影响。以石川细胞为体外模型,我们通过 LC-MS/MS 监测毒素浓度的变化,通过碱性磷酸酶测定法监测雌激素性,通过磺酰罗丹明 B 测定法监测细胞毒性,通过单细胞凝胶电泳法监测遗传毒性,并通过定量实时 PCR 监测选定的目的基因的转录。结果表明,在 NAC 存在下,携带环氧化物的苝醌(如 ATX-II)的强烈遗传毒性作用被消除。ATX-II/AOH 混合物的细胞效应主要由苝醌的遗传毒性决定。在这种混合物中,当与 NAC 共培养时,AOH 恢复了其雌激素性。相反,用 NAC 处理 AOH/CE 混合物不会导致雌激素性恢复,但会增强抗雌激素作用。这些发现与基因转录数据一致,表明芳烃受体 (AhR) 是链格孢毒素诱导的对雌激素受体信号的拮抗作用的主要介质。综上所述,进一步研究非遗传毒性苝醌的潜在内分泌干扰特性应成为这些新兴污染物领域未来的研究重点。© 2022 作者。由 Elsevier BV 代表科爱传播有限公司提供出版服务。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)。
摘要基于靶向选择的基因组编辑方法已实现许多基础发现,并且通常以高精度使用。然而,我们发现,在芽殖酵母中用常见的选择盒替换 DBP1 会导致相邻基因 MRP51 的表达和功能降低,尽管所有 MRP51 编码和调控序列都保持完整。盒式诱导的 MRP51 抑制导致了在删除 DBP1 的细胞中检测到的所有突变表型。这种行为类似于“邻近基因效应”(NGE),这是一种机制未知的现象,即在一个基因座插入盒式会降低邻近基因的表达。在这里,我们利用 DBP1 盒式替换导致的强烈脱靶突变表型来提供对 NGE 的机制洞察。我们发现启动子(包括表达盒中的启动子)固有的双向性会驱动发散转录本,该转录本通过转录干扰和翻译抑制来抑制 MRP51,而这种抑制是通过产生长未解码转录本异构体 (LUTI) 介导的。驱动这种脱靶效应的发散转录本产生对于酵母表达盒来说是普遍存在的,并且随插入而普遍发生。尽管如此,脱靶效应通常可以通过局部序列特征自然阻止,例如终止盒插入位点和邻近基因之间的发散转录本的序列特征。因此,可以通过将转录终止子序列插入盒中(位于启动子两侧)来消除盒诱导的脱靶效应。由于这种脱靶效应的驱动特征被广泛保留,我们的研究表明,在使用集成表达盒的其他真核系统(包括人类细胞)中的实验设计和解释时应考虑到这一点。
SARS-COV-2是轻度至重度急性呼吸系统疾病的原因,导致2019年至2022年之间在全球范围内的人类生命丧失。在包括猫和狗在内的各种动物中发现了该病毒,这使其成为一个主要的公共卫生问题和一个健康问题。在这项研究中,在动物收容所中收集了结膜和咽拭子(n = 350)和血清样品(n = 350)(n = 350)(n = 350)。中和测试(SVNT)。203(58%)拭子样品为阴性(未检测到N1和N2),2(0.6%)为正(检测到N1和N2),而145(41%)尚无定论(仅检测到N1)。对N2区域的分析和多个序列比对揭示了猫样样品RNA提取物的N2探针结合区域中的基本对缺失和取代,与GenBank数据库中的正结构和人类SARS-COV-2序列相比。用源自CAT样品扩增子序列的探针代替N2探针,127个N2阴性样品中的123个(96.9%)返回了阳性。除350种血清样品中的所有外,所有其他人的SARS-COV-2抗体都是负面的。这些观察结果表明,尽管在测试的样品中发现SARS-COV-2感染的检测较低,但宠物猫可以怀有该病毒,并作为可能导致人类感染的病毒扩散来源。此外,猫可能带有与SARS-COV-2有关的尚未描述的病毒。
基因组编辑工具,如锌指核酸酶、转录激活因子样效应核酸酶、CRISPR-Cas 系统和 CRISPR-Cas 衍生物(胞嘧啶和腺苷碱基编辑器),已广泛应用于基因组操作,并显示出它们的治疗潜力。除了基因组编辑技术之外,RNA 碱基编辑技术也得到了开发 1 。由于 RNA 编辑是可逆的、可调控的,并且不会导致基因组的永久性改变,因此它在治疗应用中可能具有一定的优势。对于腺苷的 RNA 编辑,作用于 RNA 的腺苷脱氨酶 (ADAR) 家族的成员,如 ADAR1(异构体 p110 和 p150)和 ADAR2(参考文献 2、3),已被设计用于将腺苷 (A) 精确转化为肌苷 (I) 1 。 ADAR1/2 的催化底物是双链 RNA,ADAR1/2 的脱氨酶结构域负责 A 到 I 的 RNA 编辑 4、5。肌苷被识别为鸟苷 (G),并在随后的细胞翻译过程中与胞苷 (C) 配对 3。为了实现靶向 RNA 编辑,ADAR 蛋白(或其脱氨酶结构域 ADAR DD)已与多种 RNA 靶向模块融合,例如 λ N 肽 6 – 8、SNAP 标签 9 – 13 和 Cas13 蛋白 14。此外,可以利用带有 R/G 基序的工程向导 RNA 与异位表达的 ADAR1 或 ADAR2 蛋白偶联来实现靶向 RNA 编辑 15 – 18。然而,外源编辑酶的异位表达与几个问题有关,包括基因组和/或 RNA 转录物的大量全局脱靶编辑 19 – 23 、免疫原性 24 – 27 、致癌性 28 – 30 和递送障碍 24 。 Stafforst 团队和我们自己报告的两种 RNA 编辑技术 RESTORE 31 和 LEAPER 32 利用内源性 ADAR 对 RNA 进行可编程编辑,而无需引入
虽然传统的依赖培养的方法可以有效检测某些微生物,但市政饮用水 (DW) 微生物组的综合组成,包括细菌、古菌和病毒,仍然未知。宏基因组测序为准确确定和分析 DW 的整个微生物群落打开了大门,全面了解 DW 物种多样性,特别是在 COVID-19 时代的公共卫生问题背景下。在这项研究中,我们发现大多数可培养细菌和一些粪便指示菌,如大肠杆菌和铜绿假单胞菌,在所有样品中均无法使用依赖培养的方法培养。然而,宏基因组分析表明,DW 样品中的主要细菌种类属于变形菌门和浮霉菌门。值得注意的是,甲基杆菌属在所有水样中最为丰富,其次是鞘氨醇单胞菌、芽生菌和固氮螺菌。虽然检测到了低水平的毒力相关因子,例如 Esx-5 VII 型分泌系统 (T7SS) 和 DevR/S,但仅在一个样本中以低丰度鉴定出红霉素抗性基因 erm (X),一种 rRNA 甲基转移酶。在一些样本中鉴定出了与毒力和抗性基因相对应的宿主,包括分枝杆菌属。在一些 DW 样本中发现了微量的古细菌 DNA(Euryarchaeota、Cren archaeota)。使用胶体金和实时逆转录聚合酶链反应 (RT ‒ PCR) 方法,所有 DW 样本中的轮状病毒、柯萨奇病毒、人类肠道病毒和 SARS-CoV-2 等病毒均为阴性。然而,在一些 DW 样本中发现了编码新目逆转录病毒(Ortervirales)和疱疹病毒目的 DNA。整个微生物群落的代谢途径涉及细胞间通讯和信号分泌,有助于水中不同微生物种群之间的合作。本研究利用培养依赖方法和宏基因组测序结合生物信息学工具,深入了解了 COVID-19 大流行期间中国杭州 DW 的微生物群落和代谢过程。