摘要 人工智能 (AI) 已成为神经病学领域的一种变革性工具,为脑部疾病的诊断、治疗和管理提供了创新的解决方案。本综述重点介绍了 AI 在三个关键领域的应用:中风、阿尔茨海默病和动脉瘤。通过分析机器学习算法、深度学习模型和神经网络的最新进展,本文强调了 AI 在提高诊断准确性、预测疾病进展和个性化治疗计划方面的重大影响。在中风的背景下,AI 在增强成像技术和预测患者结果方面发挥了重要作用。对于阿尔茨海默病,通过分析神经影像和临床数据,AI 驱动的工具在早期检测和监测疾病进展方面显示出良好的前景。在动脉瘤的情况下,AI 应用改善了检测和风险评估,促进了及时有效的干预。尽管取得了这些进展,但本综述还讨论了与 AI 整合到临床实践相关的伦理考虑、挑战和局限性。这篇浅显的评论旨在为研究人员、临床医生和政策制定者提供宝贵的见解,促进人工智能技术在脑部疾病管理中的进一步探索和实施,以及脑部疾病成像的商业平台。关键词:脑卒中、阿尔茨海默病、动脉瘤、人工智能、脑部疾病
在2021年,在全国各地的不同地点钻了五个钻孔,以考虑不同的自然条件。每个钻孔都有一个安装了单个U-Pipe的热交换器。在2021年,进行了测试温度测量和TRT测试,而在2022 - 2023年,定期测量以各个季节的季节进行季度进行。在地下最浅的部分的结果深度深约2-5米,表明其温度与气候和天气状况之间存在牢固的关系。进一步,该地下温度区域被称为每日和季节温度变化的区域。下面的地下温度变异性随着深度而逐渐降低,较少依赖外部因素。在通常15-25米的深度处,具体取决于位置,温度稳定,接近给定位置时平均环境气温的值。这个地下温度区(称为中性或瞬态温度的区域)可以持续到约50-60米的深度甚至更高。根据地热梯度的值开始更深的地下温度开始升高。在本文提出的研究中得出的地下温度值在一定程度上也取决于各种地理和人为因素,例如岩石的热性质,例如导热率,含水层的存在,气候异常和地下基础设施的存在。
深度学习和预测编码架构通常假设神经网络中的推理是分层的。然而,深度学习和预测编码架构在很大程度上忽视了神经生物学证据,即所有分层皮质区域,无论高级还是低级,都直接投射到皮质下区域并接收来自皮质下区域的信号。鉴于这些神经解剖学事实,当今以皮质为中心的分层架构在深度学习和预测编码网络中的主导地位是值得高度怀疑的;这种架构很可能缺少大脑使用的必要计算原理。在本文中,我们提出了浅层大脑假说:分层皮质处理与皮质下区域大量贡献的大规模并行过程相结合。这种浅层架构利用了皮质微电路和丘脑皮质环路的计算能力,而这些并不包含在典型的分层深度学习和预测编码网络中。我们认为,浅层大脑结构比深层层次结构有几个关键的优势,并且更完整地描述了哺乳动物的大脑如何实现快速灵活的计算能力。
在碳捕获,利用率和存储(CCUS)价值链中,二氧化碳(CO 2)近海地质存储的安全性和风险评估需要评估可能的意外潜艇CO 2泄漏的后果,包括释放高流量和很长的持续时间的释放。基于特定子模型的整合,开发了一种用于估计浅水中海底井喷影响的创新程序。用于井喷仿真的模型用于预测源项的特征。海底羽流的命运。最后,模拟了表面气体的大气分散体,以估计损伤距离。该方法在一组案例研究中的应用证明,在极高的水中,对于CO 2,气体云在空气中分散的阈值距离可能高于天然气。但是,当考虑更高的水深度时,CO 2向大气中的释放会因在水柱中的CO 2的溶解而大大减弱。
摘要。自1980年代以来,已经开发出浅地热溶液,其原理是将热交换管附加到岩土结构的加固笼子上。这些低能解决方案结合了结构性和热作用,允许满足建筑物的加热和冷却需求,以非常低的碳成本。能量地理通常将其放置在地下水流中。一方面,这是避免任何多年热偏移的好方法,因为过量或默认值通过对流会得到缓和。这一对流产生了热羽,土壤中的热波可以与可能影响行为的下游结构相互作用。对这些互动的理解对于在城市规模上对浅层地热发展的明智管理至关重要。为了研究这些相互作用,已经在Sense City研究了一组9个能源堆,这是一个迷你城市,可以强加特定的气候,并且可以控制地下水流。使用FEM软件切塞-LCPC开发了一个数值液压 - 热耦合模型,以推断结果。实验模型和数值模型的组合为定义有关预防相互作用的指南提供了有用的结果。
为了实现容错量子计算,我们需要在初始化量子设备后重复以下四个步骤。首先,我们执行 1 或 2 个量子比特量子门(如果可能的话,并行执行)。其次,我们对量子比特的子集进行综合征测量。第三,我们执行快速经典计算以确定发生了哪些错误(如果有)。第四,根据错误,我们应用校正步骤。然后,该过程对下一个门序列重复。这四个步骤对于实现容错量子计算至关重要。为了使这四个步骤成功,我们需要门的错误率低于某个阈值。不幸的是,当前量子硬件的错误率仍然太高,无法满足这一要求。另一方面,当前的量子硬件平台在设计时就考虑到了这四个步骤。在本研究中,我们利用这个四步方案,不是执行容错计算,而是增强执行 1 量子比特门和最近邻 2 量子比特门的短、恒定深度量子电路。为了探索这如何有用,我们研究了一个称为局部交替量子经典计算 (LAQCC) 的计算模型。在这个模型中,量子比特被放置在一个网格中,它们只能与它们的直接邻居交互;量子电路具有恒定深度和中间测量值;经典控制器可以对这些中间测量结果执行对数深度计算,并根据结果控制未来的量子操作。该模型自然地适合 NISQ 时代的量子算法和成熟的容错量子计算。我们展示了 LAQCC 电路如何创建恒定深度量子电路无法实现的长距离交互,并使用它来构建一系列有用的多量子比特操作。利用这些门,我们创建了三种新的状态准备协议,用于任意数量的状态、W 状态和 Dicke 状态的均匀叠加,这是 W 状态的泛化。此外,我们表明这种类型的模型包含不太可能被经典模拟的电路,并通过展示 QNC 1 的包含来限制该模型的功率
摘要:鳗草 (Zostera marina) 是潮间带和潮下带生态系统的关键组成部分。然而,人类活动的压力已导致其种群在全球范围内下降。划定和持续监测鳗草分布是了解这些压力和提供有效的沿海生态系统管理的重要组成部分。此类空间监测的一种拟议工具是远程图像,它可以经济高效地频繁覆盖大片且难以接近的区域。但是,要有效应用这项技术,需要了解鳗草及其相关基质的光谱行为。在本研究中,原位高光谱测量用于定义关键光谱变量,这些变量可在 Z. marina 和相关水下基质之间提供最大的光谱分离。对于原位水面反射数据集的鳗草分类,所选变量为:斜率 500–530 nm,一阶导数 (R') 在 566 nm、580 nm 和 602 nm,总体准确率为 98%。当原位反射数据集经过水校正时,所选变量为:566:600 和 566:710,总体准确率为 97%。使用现场光谱仪识别鳗草的深度限制平均为 5.0 至 6.0 m,范围为 3.0 至 15.0 m,具体取决于水柱的特性。涉及高光谱机载图像底栖分类的案例研究表明,变量选择的主要优势是满足统计上更复杂的最大值的样本量要求
Bravyi、Gosset 和 König(Science 2018)、Bene Watts 等人(STOC 2019)、Coudron、Stark 和 Vidick(QIP 2019)以及 Le Gall(CCC 2019)最近的研究表明,浅(即小深度)量子电路和经典电路的计算能力存在无条件分离:量子电路可以以恒定深度求解经典电路需要对数深度才能求解的计算问题。利用量子纠错,Bravyi、Gosset、König 和 Tomamichel(Nature Physics 2020)进一步证明,即使量子电路受到局部随机噪声的影响,类似的分离仍然存在。在本文中,我们考虑了在计算结束时任何恒定部分的量子比特(例如,巨大的量子比特块)都可能被任意破坏的情况。即使在这个极具挑战性的环境中,我们也朝着建立量子优势迈出了第一步:我们证明存在一个计算问题,可以通过量子电路以恒定深度解决,但即使解决该问题的任何大子问题也需要对数深度和有界扇入经典电路。这为量子浅电路的计算能力提供了另一个令人信服的证据。为了展示我们的结果,我们考虑了扩展图上的图状态采样问题(之前的研究也使用过)。我们利用扩展图对顶点损坏的“鲁棒性”来表明,对于小深度经典电路来说很难解决的子问题仍然可以从损坏的量子电路的输出中提取出来。
以及其他水体特性已使用光谱查找表 [7] 进行处理,其中前向辐射传输模型(如 Hydrolight [8])会针对不同的水柱特性、深度和底部类型重复执行。为了全面起见,这些查找表必须很大,并且可能需要针对特定的海岸类型进行调整,因为底部类型和水特性可能会因海岸类型而有很大差异。高光谱数据的一个吸引人的特征是,除了水深测量检索之外,它还能够同时满足多种用途。光检测和测距 (LIDAR) 也被广泛用于检索水深测量数据。LIDAR 的优势在于它是一种主动传感器,可以在较深的水域提供更高的精度,但是,与典型的机载高光谱传感器相比,诸如扫描水文作业机载激光雷达调查 (SHOALS) [4] 之类的 LIDAR 系统必须在非常低的高度飞行,并且扫描范围相对较小。在非常浅的水域(深度小于 2 米)中,LIDAR 系统通常无法提供可靠的检索,无法解决底部和表面回波之间的差异。在本文中,我们专注于这种非常浅的水域,特别是从可以假设相对简单的反射模型的光谱范围中检索水深。与可见光波长的反射率相比,必须仔细考虑水柱的所有贡献,近红外波长反射率(800nm 以上)主要取决于水的吸收率和深度,以及底部反射率,水柱成分起次要作用。