控制门 RY (0 . 49 π ) 所需的辅助量子位,q 5 是用于对数据进行幅度编码的 1 量子位寄存器,q 6 是编码标签的量子位。在 IBM 量子处理器 ibmq 16 melbourne 上运行该算法可提供 1024 次采样来对量子位 q 0 进行采样。获得的 P (1) 估计为 ˆ P = 490 / 1024 ≃ 0 . 48,则分配给 x = (0 . 884 , 0 . 468) 的标签为 y = − 1,正如预期的那样。尽管在此测试中分类正确,但与模拟器 ibm qasm simulator 的结果进行比较表明,所考虑的量子机过于嘈杂,无法通过算法 1 进行良好的分类。模拟器的输出统计数据提供 ˆ P = 273 / 1024 ≃ 0 . 27 。此结果与未分类数据向量 x 接近训练向量之间的中间点的事实一致。使用相同的训练点和新的未标记实例 x = (0 . 951 , 0 . 309)(其正确分类为 y = 1)重复实验,量子机失败。事实上 ibmq 16 melbourne 返回相对频率 ˆ P = 338 / 1024 ≃ 0 . 38 ,因此它将 x 归类为 y = − 1 。在同一个测试中,模拟器 ibm qasm simulator 返回 ˆ P = 244 / 1024 ≃ 0 . 24 正确分类。观察到的分类准确性不足取决于所考虑的量子处理器的低量子体积 1(QV = 8)。未来工作的内容可能是在更大、更可靠的硬件上进行测试(例如,具有 27 个量子比特和 QV=128 的 IBM 量子机器 ibmq montreal)。所提出的量子分类器的指数加速归因于在对数时间内有效准备量子态以及在恒定时间内执行分类本身(这取决于所需的准确性)。事实上,选择 QRAM 是出于对总体时间复杂度的明确估计,但允许使用其他有效的初始化来运行此量子分类器。
摘要 — 语义文本相似性是估计两个文本含义之间的相似性的任务。在本文中,我们通过部分调整模型然后端到端调整,在语义文本相似性基准上对 Transformer 架构进行微调,以实现语义文本相似性。我们通过将问题作为二分类任务或回归任务来尝试 BERT、RoBERTa 和 DeBERTaV3 交叉编码器。我们结合 Transformer 模型的输出,并使用手工制作的特征作为增强算法的输入。由于测试集结果较差,加上验证集的改进,我们尝试使用不同的数据集拆分来进一步调查这种情况。我们还提供了错误分析,重点关注预测范围的边缘。索引术语 — 语义文本相似性、Transformer、增强算法、自然语言处理
自然语言处理是AI的不断增长的子场,具有不同应用的多种多样。常见且看似直接的应用是文档相似性,通常会实现各种NLP算法。但是,加上其不同技术的多功能性,也有缺点。不同的算法倾向于集中在一个或多个相似性的因素上,这意味着它们可以在一种类型的相似性评估中表现出色,但会与另一种相似性评估。本文研究了三种NLP技术,重点是它们自动化相似性评估的能力。他们的重点是课程内容在课程资格或课程学分之间使用之间的相似性。在此时间点,此比较是手动进行的。确定哪些因素在学分课程中很重要,已经实施了三种算法并在各种课程比较测试中运行。所选的算法和因子是TF-IDF,用于加权项重叠,n-gram,用于上下文匹配,并使用关键字提取进行主题检测。在评估其整体效果时,使用关键字提取的NER似乎是最佳选择。直到显而易见的是,它更加一致,自信地给出错误的答案。它在具有一些相似之处的课程上给出了很高的相似性分数,例如来自同一所大学,但不够相似,无法彼此学分。使用n-grams来确定相似性是在相似和不同课程上最可靠的,并且被证明是可靠的选择。tf-idf的当前词汇表现不佳。总结基于上下文的N-gram的相似性在研究课程自动信用时被证明是一个可靠且有用的因素,但在实际使用之前需要进一步的工作。
(c 1,c 2,。。。,c k)(c k +1 = c 1 + n)和l [i]∈{1,2,...,d},对于0≤i≤k,其中残基之间的接触
尽管生物信息学、系统生物学和机器学习最近取得了进展,但准确预测药物特性仍然是一个悬而未决的问题。事实上,由于生物环境是一个复杂的系统,传统的基于化学结构知识的方法无法完全解释药物与生物靶标之间相互作用的性质。因此,在本文中,我们提出了一种无监督的机器学习方法,该方法使用我们了解的有关药物-靶标相互作用的信息来推断药物特性。为此,我们根据药物-靶标相互作用定义药物相似性,并根据药物-药物相似性关系构建加权药物-药物相似性网络。使用能量模型网络布局,我们生成与特定的主要药物特性相关的药物群落。DrugBank 确认了这些群落中 59.52% 的药物的特性,26.98% 是我们使用 DDSN 方法重建的现有药物重新定位提示。其余 13.49% 的药物似乎与主要药理特性不符;因此,我们将它们视为药物再利用的提示。测试所有这些再利用提示所需的资源是相当可观的。因此,我们引入了一种基于中介度/度节点中心性的优先排序机制。通过使用中介度/度作为药物再利用潜力的指标,我们分别选择壬二酸和甲丙氨酯作为可能的抗肿瘤药和抗真菌药。最后,我们使用基于分子对接的测试程序进一步分析壬二酸和甲丙氨酯的再利用。
尽管生物信息学、系统生物学和机器学习最近取得了进展,但准确预测药物特性仍然是一个悬而未决的问题。事实上,由于生物环境是一个复杂的系统,传统的基于化学结构知识的方法无法完全解释药物与生物靶标之间相互作用的性质。因此,在本文中,我们提出了一种无监督机器学习方法,该方法使用我们了解的有关药物-靶标相互作用的信息来推断药物特性。为此,我们根据药物-靶标相互作用定义药物相似性,并根据药物-药物相似性关系构建加权药物-药物相似性网络。使用能量模型网络布局,我们生成与特定、主要药物特性相关的药物社区。然而,这些社区中 13.59% 的药物似乎与主要药理特性不匹配。因此,我们将它们视为药物重新利用的提示。测试所有这些重新利用提示所需的资源相当可观。因此,我们引入了一种基于中介性/度节点中心性的优先级机制。通过使用介数/度作为药物再利用潜力的指标,我们确定药物甲丙氨酯可能是一种抗真菌药物。最后,我们使用基于分子对接的稳健测试程序进一步确认甲丙氨酯的再利用能力。
摘要。本文的目的是研究在机械工程领域的Chatgpt和Bert模型的应用。在机器学习的背景下,ChatGPT和BERT模型可以应用于各种自然语言处理任务,例如根据文档的特定版本分析技术文档和构建说明,诊断出故障或客户服务。本文讨论了Bert和Chatgpt模型的基本特征,其起源,还研究了主要的建筑特征,并确定了模型的主要优势和缺点。论文分析并选择各种自然语言处理任务,以测试模型在机器学习中理解自然语言的能力。选定的标准任务分为语义组,以在三个领域的每个领域中识别Chatgpt和Bert模型的功能:逻辑推理任务,释义任务和文本相似性任务。本文还讨论了操作设计的概念,该概念涉及开发指导模型产生所需输出的输入。本文定量分析并比较了基于BERT和CHATGPT模型的性能。发现和研究了自然语言理解任务中Chatgpt模型瓶颈的原因。考虑使用Mivar方法对CHATGPT模型性能的可能改进。
本文介绍了一种创新的检索增强生成方法,以进行相似性搜索。所提出的方法使用生成模型来捕获细微的语义信息并基于高级上下文理解检索相似性分数。该研究重点介绍了包含从生物医学领域提取的100对句子的生物群数据集,并引入了相似性搜索相关结果,这些结果优于先前在该数据集上获得的句子。通过对模型敏感性的深入分析,研究确定了最佳条件,导致最高相似性搜索准确性:结果揭示了较高的Pearson相关评分,在0.5的温度下达到0.905,并且提示中提供的20个示例的样本大小为20个示例。这些发现强调了生成模型进行语义信息检索的潜力,并强调了相似性搜索的有希望的研究方向。
摘要 神经退行性疾病的复杂性促使人们开发人工智能方法来预测损伤和疾病进展的风险。然而,尽管这些方法取得了成功,但它们大多是黑箱性质,阻碍了它们在疾病管理中的应用。可解释的人工智能有望通过对模型及其预测进行解释来弥合这一差距,从而促进用户的理解和信任。在生物医学领域,鉴于其复杂性,可解释的人工智能方法可以从将模型与领域知识的表示(本体)联系起来中受益匪浅。本体提供了更多可解释的特征,因为它们在语义上丰富且情境化,因此最终用户可以更好地理解;它们还对现有知识进行建模,从而支持探究给定的人工智能模型结果如何与现有科学知识相吻合。我们提出了一种可解释性方法,利用丰富的生物医学本体全景来构建基于语义相似性的解释,将患者数据和人工智能预测情境化。这些解释反映了人类的基本解释机制——相似性——同时解决了数据复杂性、异质性和规模的挑战。
In the version of the article initially published, in the “Effector-triggered immunity” sec- tion, the sentence now reading “Bacteria detect phage by monitoring transcription using a constitutively produced antitoxin ToxI, which is depleted when phage inhibit transcription, releasing the RNase ToxN that aborts phage infection” read “Bacteria link phage detection to cell death by monitoring transcription using组成性产生的抗毒素毒素,当噬菌体抑制转录,释放毒素并杀死细胞时会耗尽。”这已在本文的HTML和PDF版本中进行了纠正。