本文介绍了一种创新的检索增强生成方法,以进行相似性搜索。所提出的方法使用生成模型来捕获细微的语义信息并基于高级上下文理解检索相似性分数。该研究重点介绍了包含从生物医学领域提取的100对句子的生物群数据集,并引入了相似性搜索相关结果,这些结果优于先前在该数据集上获得的句子。通过对模型敏感性的深入分析,研究确定了最佳条件,导致最高相似性搜索准确性:结果揭示了较高的Pearson相关评分,在0.5的温度下达到0.905,并且提示中提供的20个示例的样本大小为20个示例。这些发现强调了生成模型进行语义信息检索的潜力,并强调了相似性搜索的有希望的研究方向。