*任何未包含在此表格中的设备申请必须在培训日期前 90 天提出。完整的培训支持系统 (TSS) - 企业培训辅助设备、设备、模拟器和模拟 (TADS) 索引和目录可在 AKO2 找到。滚动到主页底部并选择“TADS 索引和目录”。
由于驾驶舱中航空电子设备的复杂性和数量不断增加[1],吸收量不断增加。随着这些系统变得越来越复杂,飞行员的精神和身体工作量也将超出现实限制。因此,具有人工智能特性的专家系统旨在协助飞行员进行关键的决策过程。最近,许多基于人工智能的应用程序被设计用于军用战斗机,包括武器运载、智能对抗或威胁规避。当今军用飞机上的战术显示器不仅用于显示态势感知,而且还与许多系统协同工作,例如导航支持系统(NSS)、威胁规避(TA)、电光红外(EO / IR)或武器运载系统(WDS)。这种战术显示系统不仅旨在协助飞行员进行决策过程,而且还能智能地执行任务。该系统通过 EO/IR 摄像头观察世界,使用其内部数据库了解和分类威胁,通过考虑环境约束(例如天气、地形等)计算出最佳路线,以应对威胁并使用机载最合适的可用武器摧毁目标。为了有效地执行此任务,系统必须包含一个中央处理器来收集、融合和
“我们的目标是为学生提供最先进的设施,帮助他们完成飞行员培训,并准备好自信地向航空公司寻求工作职位。我们花了一年多的时间研究不同的公司来帮助我们制定解决方案,但只有 Pacific Simulators 能够以我们愿意支付的价格满足我们的要求。” BYRON LEGUISAMO ADF Airways 首席飞行员,美国迈阿密 “这是我们为我们的航空公司合作伙伴和学生群体提供 MCC 培训的不二之选。该设备非常适合这种类型的培训,与我们研究过的同类产品相比,它提供了最高级别的功能和保真度。” BRIAN HORTON 新南威尔士大学澳大利亚分部飞行运营总监 “我们认为我们需要一款高品质的设备,具有出色的可靠性、强大的售后服务和支持,并且价格合理。虽然一些制造商能够满足我们的部分要求,但只有 Pacific Simulators 满足了我们寻找的确切标准。” ALLAN BROOKS Aviation Australia 总经理,澳大利亚昆士兰州
在加入 SBIR 计划之前,他利用自己多元化的背景创造了一种产品,可以降低当今飞机模拟器的成本、尺寸和复杂性。PTI 首席技术官 David 表示:“过去,您可能需要派人带着一张巨大的电缆图跨越世界各地来修理这些飞行模拟器,而现在,您可以远程完成这项工作。它大大提高了模拟器的整体维护、构建和可靠性。”David 和他的同事 Matt Burch、Hans Harmon 和 Seth Gabbert 为洛克希德马丁公司设计了一种分布式数字输入/输出 (I/O) 总线,以取代商用和军用飞行模拟器中使用的混乱电线。模拟器驾驶舱中的每个仪表、飞行控制装置和面板都配备了自己的小型计算机,称为 Pinnacle 接口节点 (PIN),而不是一台中央计算机。这些 PIN 充当模拟器驾驶舱和中央计算机之间的中间人,执行计算机和驾驶舱设备通信所需的信号转换(例如,模拟到数字或数字到模拟)。多亏了 David 的创新,PIN 不再需要从驾驶舱中的每台设备到计算机之间连接一堆杂乱的电线,而是只有一条以太网电缆连接到网络集线器,然后网络集线器连接到中央计算机。现在,大多数维修只需更换导致问题的盒子即可,而不必筛选数百条电线。在
量子模拟正迅速成为量子技术的主要应用(1)。模拟模拟是一种关键方法,即在严格控制的环境中设计多体量子系统,并简单地允许其动态发生。随着这些系统规模的扩大和性能的提高,它们的计算能力开始超越现有的经典计算机(2-4)。尽管有所改进,但它们仍然受到错误的影响。因此,人们普遍认为,在模拟量子模拟器能够解决实际或基本重要问题之前,必须开发出定量保证容易出错的模拟量子模拟器输出正确性的方法(5)。模拟量子模拟器的验证通常依赖于包含错误和缺陷的可处理理论模型(1)。另一种方法是将动态正向和反向运行相同的时间,使系统返回到其初始状态——如果没有错误的话。这种方法通常被称为 Loschmidt 回声,它可以检测到一些错误和缺陷,但不能提供输出正确性的定量保证。已经开发出更复杂的变体,使模拟器从某个已知的初始状态通过状态空间中的闭环演化,最终返回到其初始状态 (6)。这些提供了模拟器如何忠实地实现目标汉密尔顿量的某种衡量标准。汉密尔顿学习 (7、8) 也服务于类似的目标,它正在为模拟模拟器开发。通过实验将目标汉密尔顿量应用于其近似稳定状态并估计一系列结果状态的预期值,汉密尔顿学习提供了实际应用的汉密尔顿量系数的估计值。虽然它将状态准备和测量中的错误错误地归因于汉密尔顿量中的错误,但它确实为实验实现的实际汉密尔顿量提供了一些信心。还为模拟量子模拟器开发了随机基准测试等方法来量化其组件的性能 (9)。然而,这些方法都无法对模拟器输出的正确性提供定量保证。最近还提出了一种用于估计量子模拟保真度的基准测试协议,但该协议需要指数级的经典资源,因此不可扩展(10)。在本文中,我们提出了一种可扩展且实用的认证协议,该协议为模拟量子模拟器输出的正确性提供了上限。由于所有量子模拟器的输出都是经典概率分布,因此我们的协议对错误和无错误的模拟量子模拟器生成的概率分布之间的变化距离设置了上限。我们将这项任务称为量子认证。实验上,我们的量子认证协议可以在现有的模拟模拟器上实现,特别是那些使用里德堡原子的模拟器。这些系统可以根据 XY 相互作用 (11) 以及交错单量子比特门 (12) 实现模拟汉密尔顿演化。因此,我们的工作可以解释为通过利用可编程性的进步来解决验证模拟量子模拟器输出的未决问题 (1,第 V 节)。
*任何未包含在此表格中的设备申请必须在培训日期前 90 天提出。完整的培训支持系统 (TSS) - 企业培训辅助设备、设备、模拟器和模拟 (TADSS) 索引和目录位于 TSC。请咨询 TSC 工作人员了解详细信息。
全飞行模拟器在事故调查中的应用 Robin Tydeman 航空事故首席检查员 航空事故调查处 摘要 飞行模拟已经成为航空培训中不可或缺的工具。在短短 50 多年的时间里,它已经建立了高保真度的声誉,并能够提供一个经济、安全地对机组人员进行有效培训的环境。飞行模拟也证明了自己对飞机事故调查员的价值。然而,随着数字控制模拟器和引人注目的视觉系统的出现,人们很容易被所谓的“保真度”所欺骗。任何对模拟的依赖都会引发对后续结论有效性的合理质疑,并可能对整个调查的技术真实性产生怀疑。本文建议,在事故调查中使用飞行模拟时应谨慎,承认模拟器有局限性。在事故调查中,飞行模拟器的传统用途是使用飞行数据记录器 (FDR) 的数字数据对模拟器进行编程,模拟器通常是固定基座工程模拟器,然后模拟器将复制飞机的飞行。还可以结合空中交通管制雷达、TCAS 装置和驾驶舱语音记录器的数据。这样,调查人员就能掌握完整的情况!但是,这样做的准确度如何呢?
摘要 本研究提出并评估了虚拟现实 (VR) 训练模拟器的评分和评估方法。VR 模拟器可捕获详细的 n 维人体运动数据,这些数据可用于性能分析。开发了定制的医疗触觉 VR 训练模拟器,并用于记录来自 271 名具有多种临床经验水平的受训者的数据。提出了 DTW 多元原型 (DTW-MP)。VR 数据被分为新手、中级或专家。用于时间序列分类的算法的准确率为:动态时间规整 1-最近邻 (DTW-1NN) 60%,最近质心 SoftDTW 分类 77.5%,深度学习:ResNet 85%,FCN 75%,CNN 72.5% 和 MCDCNN 28.5%。专家 VR 数据记录可用于指导新手。评估反馈可以帮助受训者提高技能和一致性。动作分析可以识别个人使用的不同技术。可以实时动态检测错误,发出警报以防止受伤。
在本研究中开发的培训要求技能已被确定,这些技能可以在设计复杂程度从最简单到最复杂的训练设备中合理地开发。有些程序技能可以在非常简单的训练设备中开发,例如在纸质训练器中学习 HH3F 发动机启动程序;有些多维技能可以在稍微复杂一些的设备中开发,例如在仪表飞行训练器中学习仪表导航;有些技能涉及对飞行安全至关重要的程序和心理运动要素的时间共享,这些技能只能在高度复杂的任务模拟器中开发,例如在飞行模拟器中学习在恶劣天气下仪表飞行期间对各种系统故障的及时响应。
为了应对日益复杂的设备和不断增加的运营成本,在进行旋翼和固定翼飞机操作训练时,美国海岸警卫队探索了飞行训练设备在其飞行员训练计划中的潜在用途。为支持该探索,Humian 资源研究组织对海岸警卫队飞行员训练要求进行了研究。该研究于 1969 年 2 月至 11 月期间进行,并编写了一份咨询报告。该研究中确定的飞行员训练要求在 HumR.RO 技术报告 69-102《美国海岸警卫队飞行员训练要求研究》中进行了描述。本技术报告是在同一时间段内编写的,以该报告中包含的训练要求信息为基础。