单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
收集了包括无人机和干扰因素的数据收集测试数据。无人机数据故意多样化,以各种距离和背景为特色。无人机在遥远的地方测试了模型检测无人机的准确性,该数据的细节受到限制,而在不同背景下的无人机测试了模型对噪声的弹性。根据类似于无人机或与无人机一起发现的对象,故意选择了干扰物数据。由于在选择和标记训练数据时犯了错误,该模型测试了模型被模型中存在的类似特征和偏见误导或愚弄的倾向。在步骤1中,总共收集了12206张图像,其中包括7755张图像和分散图像,其余4451张图像。
航空燃气涡轮发动机的发展对发动机控制系统提出了越来越高的要求,以提高推力并改善燃油消耗。这些要求导致了电子控制系统的广泛使用。这种系统的早期版本采用了监控概念,于 20 世纪 70 年代推出,目前在运行的许多飞机上都能找到这种系统。目前运行的 JAS 版本采用了这种概念。然而,监控概念并不能完全满足大多数现代发动机的要求,这导致了 20 世纪 80 年代全权数字电子控制 (FADEC) 概念的出现。 FADEC 系统控制发动机所需的所有功能,并引入了许多改进,例如:(i) 可以实施现代控制理论中的复杂技术,这些技术既可以提高性能,又可以提高可靠性,(ii) 由于有限使用流体力学而减轻重量,以及 (iii) 可以实施内置维护支持,从而降低维护成本并提高系统可靠性。正如这些示例所示,FADEC 支持提高性能和可靠性并降低总成本的努力。FADEC 系统目前在许多飞机上运行,例如:新型军用飞机 F-18E/F 和欧洲战斗机以及民用飞机空客 320、321 和波音 777。
1。Shakunthala Manay和Shadakhraswamy的食物事实和原则。2。Srilakshmi的食品科学,第二版,2002年3。Swaminathan的食品科学,化学和实验食品。4。诺曼(Norman)的食品科学。5。Griswold R.M.对食品的实验研究6。Helen Charley的食品科学。7。Vijaya Khader,印度农业理事会食品科学技术教科书
我们介绍了Multidiff,这是一种新颖的方法,用于从单个RGB图像中始终如一地进行新颖的视图综合。从单个参考图像中综合新观点的任务是大自然的高度不足,因为存在多种对未观察到的区域的合理解释。为了解决这个问题,我们以单核深度预测变量和视频扩散模型的形式结合了强大的先验。单核深度使我们能够在目标视图的扭曲参考图像上调节模型,从而提高了几何稳定性。视频扩散先验为3D场景提供了强大的代理,从而使模型可以在生成的图像上学习连续和像素精度的对应关系。与依靠容易出现漂移和误差累积的自动格言形象生成的方法相反,Multidiff共同综合了一系列帧,产生了高质量和多视图一致的RE-
对准确的3D手姿势估计的追求是理解以自我为中心视力领域的人类活动的基石。大多数现有估计方法仍然依赖单视图像作为输入,从而导致潜在的局限性,例如,深度有限的视野和义务。解决这些问题,添加另一个相机以更好地捕获手的形状是实践方向。然而,现有的多视图手姿势姿势方法具有两个主要缺点:1)重新训练的多视图注释,这些注释是备用的。2)在测试过程中,如果相机参数/布局与训练中使用的相同,则模型将变为inpapplicable。在本文中,我们提出了一种新颖的单算观看改编(S2DHAND)解决方案,该解决方案将预先训练的单视估计器适应双视图。与现有的多视图训练方法相比,1)我们的适应过程是无监督的,消除了对多视图注释的需求。2)此外,我们的方法可以处理带有未知相机参数的Arbitarary双视图对,从而使该模型适用于不同的相机设置。具体来说,S2DHAND建立在某些立体声约束上,包括两种视图之间的成对跨视图共识和转换的不变性。这两个立体声约束以互补的方式使用来进行伪标记,从而允许可靠的适应性。评估结果表明,在内部和跨数据库设置下,S2DHAND在任意摄像机对上实现了重大的实现,并且胜过具有领先性能的现有适应方法。项目页面:https://github.com/ut-vision/s2dhand。
图像去雾是一种减少图像中雾霾、灰尘或雾气影响的方法,以便清晰地查看观察到的场景。文献中存在大量传统和基于机器学习的方法。然而,这些方法大多考虑可见光光谱中的彩色图像。显然,由于热红外光谱的波长较长,受雾霾的影响要小得多。但远距离观测期间的大气扰动也会导致热红外 (TIR) 光谱中的图像质量下降。在本文中,我们提出了一种为 TIR 图像生成合成雾的方法。然后,我们分析了现有的盲图像质量评估措施雾感知密度评估器 (FADE) 对 TIR 光谱的适用性。我们进一步全面概述了当前图像去雾的最新技术,并通过经验表明,许多最初为可见光图像设计的方法在应用于 TIR 光谱时表现得出奇的好。这在最近发布的 M3FD 数据集上进行的实验中得到了证实。
[注意:在有微生物学和生物技术的教师可用性的大学中,这些章节需要通过微生物学和生物技术学院来处理。在其他大学中,上述主题应由植物学和动物学教师处理]
1 日内瓦大学儿科肿瘤学和血液学 CANSEARCH 研究平台,瑞士日内瓦 1205;nicolas.waespe@ispm.unibe.ch(NW);sven.strebel@ispm.unibe.ch(SS);simona.mlakar@unige.ch(SJM);tiago.nava@unige.ch(TN)2 伯尔尼大学社会与预防医学研究所,瑞士伯尔尼 3012;claudia.kuehni@ispm.unibe.ch 3 伯尔尼大学细胞与生物医学科学研究生院(GCB),瑞士伯尔尼 3012 4 伯尔尼大学健康科学研究生院(GHS),瑞士伯尔尼 3012 5 查尔斯-布鲁诺癌症中心,CHU Sainte-Justine 研究中心,儿科系,加拿大魁北克省蒙特利尔 H3T 1C5; maja.krajinovic@umontreal.ca 6 加拿大蒙特利尔 CHU Sainte-Justine 儿科系临床药理学部,魁北克省蒙特利尔 H3T 1C5,加拿大 7 加拿大蒙特利尔大学医学院药理学系,魁北克省蒙特利尔 H3T 1J4,加拿大 8 伯尔尼大学医院内科学系儿科血液学/肿瘤学分部,瑞士伯尔尼 3012 伯尔尼 9 日内瓦大学医院妇女、儿童和青少年部,儿科肿瘤学和血液学分部,瑞士日内瓦 1205 * 通讯地址:Marc.Ansari@hcuge.ch;电话:+41-79-553-6100
2。进行实验室研讨会,使学生能够获得细菌文化技术的动手经验3。案例研究竞赛:组织案例研究竞赛,学生可以在团队中工作以分析和解决与细菌学和病毒学有关的假设案例。4。安排进行微生物学研究机构的实地考察,例如政府实验室,工业环境或医疗机构。