104 Senvy CurpenNaïck总理办公室(内阁办公室)201108注册表:208 6642 scurpennaick@govmu.org104 Senvy CurpenNaïck总理办公室(内阁办公室)201108注册表:208 6642 scurpennaick@govmu.org
104 Senvy CurpenNaïck总理办公室(内阁办公室)201108注册表:208 6642 scurpennaick@govmu.org104 Senvy CurpenNaïck总理办公室(内阁办公室)201108注册表:208 6642 scurpennaick@govmu.org
拓扑和超导性,两种不同的现象,为量子特性及其在量子技术,旋转型和可持续能源技术中的应用提供了独特的见解。tin(sn)在这里起关键作用作为元素,因为其两个结构相,α -sn表现出拓扑特征,β -sn显示超导性。在这里,我们使用分子束外延和缓冲层的晶格参数的分子束外延对SN薄膜中的这些相进行了精确的控制。SNFMS表现出β -SN或α -Sn相,因为缓冲层的晶格常数与6相差不同。10Å至6。48Å,跨越从燃气(例如INAS)到Insb的范围。α-和β -SNFM的晶体结构以X射线衍射为特征,并由拉曼光谱和扫描透射电子显微镜确认。原子力显微镜验证了光滑,连续的表面形态。电运转运测量进一步验证了阶段:β-SN超导性和Shubnikov -de HAAS振荡接近3.7 K的电阻下降,用于α -SN拓扑特征。密度功能理论表明,在拉伸应变下α -SN在压缩应变下是稳定的,与实验发现很好地对齐。因此,这项研究介绍了一个通过晶格工程控制SN阶段的平台,从而在量子技术及其他方面实现了创新的应用。
1彼得·格伦伯格研究所(PGI 10),福斯申斯特鲁姆·尤里奇(ForschungszentrumJülich),威廉 - 约翰·斯特拉斯(Wilhelm-Johnen-Straße),尤里奇(Jülich)52425,德国2 IHP - 莱布尼兹(Leibniz) - 莱布尼兹(Leibniz ElmshöherAllee 71,Kassel 34121,德国4分校技术研究所(IHT),Stuttgart,Pfaffenwaldring 47,Stuttgart 70569,德国5伊布尼兹水晶增长研究所,麦克斯 - 斯特拉斯2,柏林12489,德国7 Dipartimento di Scienze,Universit`roma tre,Viale G. Marconi 446, I-00146,罗马,意大利 8 实验物理和功能材料,BTU Cottbus-Senftenberg,Erich-Weinert-Str。 1,03046,科特布斯,德国
2 清华大学微电子研究所,北京 100084 1. 引言 焊接是电子产品组装中的一项重要技术。为了形成良好的焊点,焊料的选择非常重要。焊料的可焊性、熔点、强度和杨氏弹性模量、热膨胀系数、热疲劳和蠕变性能以及抗蠕变性能都会影响焊点的质量。共晶 Au80Sn20 焊料合金(熔点 280 C)已在半导体和其他工业中应用多年。由于一些优异的物理性能,金锡合金逐渐成为光电子器件和元件封装中最好的焊接材料之一。 2. 物理性能 Au80Sn20 的一些主要物理性能如表 1 所示,从中可以看出金锡焊料的优点如下:
具有所需特性的合金可以通过控制组合物或加工[9,10]来定制微结构来开发。因此,研究人员搜索可以改善纯铅的概念的合金元素[11-13]。在此类元素中是钡和锡,增加了铅的增加,增加了拉伸强度和蠕变耐药性[14-20]。此外,钡引入铅锡合金还会增加硬度,减少电化学活性,从而增加腐蚀稳定性[21]。钡还可以使这些特性保持稳定,因为防止了过度衰老。高含量的锡的存在也抑制了铅基合金的过度分支过程[22]。另外,通过防止钝化并允许电池从深处排放的条件中弥补电池的钝化和充电,锡罐有助于网格的电化学性质。
[1] S. Lilley,钠离子电池:廉价且可持续的能源存储,Faraday Insights,https://wwwww.faraday.ac.uk/wp- content/uploads/ploads/2021/06/faraday_insightsights_11_final.pdf,(2024年8月)。[2] A. Tripathi,C。Murugesan,A。Naden,P。Curran,C。M。Kavanagh,J.M。Candliffe,A。R。Armstrong和J. T. S. Irvine,Batteries Supercaps,2023,6,1-7。[3] Y.
免责声明:本披露可能包含前瞻性陈述,这些陈述受风险因素和机会的影响,可能会影响 SNAP 对本披露项目主题的实施。本披露中包含的前瞻性陈述基于公司管理层在披露之日认为合理的假设。无法保证前瞻性陈述的准确性,因为实际结果和未来事件可能与此类陈述中的预期存在重大差异。
摘要:混合半导体 - 超导体纳米线构成了一个普遍存在的平台,用于研究栅极可调的超导性和拓扑行为的出现。其低维和晶体结构柔韧性有助于独特的异质结构生长和有效的材料优化,这是准确构建复杂的多组分量子材料的关键先决条件。在这里,我们对INSB,INASSB和INAS纳米线上的SN生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属α -SN或超导β -SN的形成。对于INAS纳米线,我们观察到相纯超导β-SN壳。但是,对于INSB和INASSB纳米线,初始外延α -SN相变成共存α和β相的多晶壳,其中β /α的体积比随SN壳厚度而增加。这些纳米线是否表现出超导性,不批判性地依赖于β -SN含量。因此,这项工作为SN阶段提供了各种半导体的关键见解,这对适合生成拓扑系统的超导杂种产量产生了影响。关键字:纳米线,拓扑材料,半导体 - 螺旋体混合动力,SN,量子计算,界面,外交T
运动模糊已知可以减少SNR。因此,处理长架X-射线传输成像数据的新方法必须与运动模糊补偿兼容。一个极端的例子是原位涡轮刀片非破坏性检查(NDI)。能够执行复杂的移动机械零件的NDI而不会拆卸它们,例如蒸汽轮机的内部,运行的飞机发动机或在测试架上发射火箭时运行的推进剂涡轮机,将显着降低疲劳和故障检查任务的停机时间。但是,从要成像的对象的运动中模糊,尤其是当与更长范围内的稀疏数据集结合使用时,会产生一个重大而新的挑战。当今对PET扫描中运动补偿的艺术状态很少超过由运动模糊引起的每秒(mm/s)位移的每秒(mm/s)。Xena的目的是将这种最新状态推出至少两个数量级 - 从mm/s运动模糊速率到cm/s速率。