t619-0215 rutfmm%i *wm%k-&8-1 masami terauchi *>,masato koike *>和masahiko isfflno 2> 15高级材料多学科研究所,Tohoku University
•通过利用Nicolet Apex FTIR光谱仪的先进技术来升级您的故障分析功能,该技术与我们的FTIR显微镜,TGA-IR系统以及其他各种配件毫不费力地集成在一起,以促进对小颗粒或表征药物表征的缺陷分析。
大气中子辐照谱仪(ANIS)是中国散裂中子源(CSNS)的一条新光束线,主要用于现代微电子的加速测试。它具有类似大气的中子谱,具有准直束斑和泛光束斑。ANIS 总长 40 米,配备中子快门、飞行管、中子扩展器、通量控制器、准直器、清除磁铁、中子滤波器以及光束线屏蔽。ANIS 后端设有控制室、操作室和储藏室。设计、组装、检查测试和初始调试测试于 2022 年成功完成。ANIS 目前处于科学调试的高级阶段,用于测量不同配置下的中子谱、通量和剖面。使用裂变电离室 (FIC)、位置灵敏气体电子倍增器 (GEM)、活化箔和单晶金刚石探测器测量了中子束特性。在这项工作中,我们介绍了 ANIS 的测量光束规格和光束评估,这对于即将启动的 ANIS 用户计划很有希望。还介绍了早期操作和用户实验。
从有机材料或荧光探针中获得的荧光光谱是控制和评估材料功能和特性的重要参数,例如峰值波长和荧光强度。但是,荧光光谱通常显示时间整合的信息,因此,当材料包含多种物质和反应性元素时,它们的荧光光谱只能作为集成信息获取。在这种情况下,一种有效的方法是通过使用时轴参数来观察光发射动力学。这通常称为荧光寿命测量,其中通过脉冲光激发的物质返回其基态所需的时间是在亚纳秒到毫秒到毫秒的区域中测量的。此测量允许获得更多信息,例如在相同的波长和材料中存在的百分比等多种不同的荧光寿命等。
自 20 世纪 80 年代以来,可调谐半导体激光光谱仪一直是 NASA 地球科学的重要组成部分 1 。早期的高空飞机光谱仪使用低温冷却铅盐激光器来测量万亿分之一级别的化学物质,从而有助于了解关键的地球系统。随着可调谐激光器逐渐成熟并可在室温条件下运行,可调谐激光光谱仪的同步小型化使得它们可以集成到 NASA 行星科学平台中,例如火星好奇号探测器上的可调谐激光光谱仪,以了解火星上的地球化学过程和可能的生命特征 2 。NASA 还投资了可调谐激光光谱仪演示,以监测对国际空间站上载人航天至关重要的气体 3 。LAMS 是第一个用于大气监测和载人航天环境中环境控制与生命支持系统 (ECLSS) 硬件反馈控制的可调谐激光光谱仪系统。有关这一目标的动机和之前 TLAS 的开发将在其他地方描述 4 。
先进的性能、更低的拥有成本、更高的易用性和紧凑的尺寸是现代实验室和生产设施的关键要求。新的生产技术使赛默飞世尔科技的工程师能够将所有这些优势融入 K-Alpha 的设计中。K-Alpha 专为多用户环境而设计。它是第一款提供全自动分析模式的 XPS 工具,从样品输入到报告生成。内置自动化意味着新用户只需经过最少的培训即可生成高质量的样品分析报告。微聚焦单色仪可最大限度地提高仪器的灵敏度和化学状态测定的精度。新能量分析仪和镜头的设计进一步提高了灵敏度。我们已采用先进的电荷补偿技术来处理绝缘样品。K-Alpha 是所有类型固体样品分析的理想仪器,包括无机、有机、生物、冶金、半导体和磁性。集成离子枪可产生质量卓越的成分深度剖面。样品传输和导航完全自动化。独特的 Reflex Optics 用于实时观察样品,与同轴和漫射样品照明相结合,可实现小面积 XPS 的精确设置。Thermo Scientific Avantage 是我们世界一流的 XPS 数据系统,可控制 K-Alpha 的所有功能。
摘要:对内华达州埃斯梅拉达县和奈县的 Cuprite 矿区 0.4 至 2.5 公里光谱区域的地球物理和环境研究成像光谱仪 (GERIS) 63 通道扫描仪数据进行了分析。使用现场光谱测量将数据校准为反射率。从 GERIS 数据中提取的单个和空间平均光谱用于根据其光谱特征识别明矾石、高岭石、明矾石和赤铁矿等矿物。还确定了一个反射特性类似于沸石组矿物的区域。在光谱域中对图像进行分类,以生成矿物分布的彩色编码图像图,清晰地显示热液系统的区域性质。将专题矿物图与现有的地质和蚀变图进行比较,证明了成像光谱仪在制作矿物勘探详细地图方面的实用性。使用成像光谱仪数据识别单个矿物并在空间中显示主要矿物学,可以增加可用于确定该地区形态和成因的信息。
摘要:对内华达州埃斯梅拉达县和奈县的 Cuprite 矿区 0.4 至 2.5 公里光谱区域的地球物理和环境研究成像光谱仪 (GERIS) 63 通道扫描仪数据进行了分析。使用现场光谱测量将数据校准为反射率。从 GERIS 数据中提取的单个和空间平均光谱用于根据其光谱特征识别明矾石、高岭石、明矾石和赤铁矿等矿物。还确定了一个反射特性类似于沸石组矿物的区域。在光谱域中对图像进行分类,以生成矿物分布的彩色编码图像图,清晰地显示热液系统的区域性质。将专题矿物图与现有的地质和蚀变图进行比较,证明了成像光谱仪在制作矿物勘探详细地图方面的实用性。使用成像光谱仪数据识别单个矿物并在空间中显示主要矿物学,可以增加可用于确定该地区形态和成因的信息。
摘要:对内华达州埃斯梅拉达县和奈县的 Cuprite 矿区 0.4 至 2.5 公里光谱区域的地球物理和环境研究成像光谱仪 (GERIS) 63 通道扫描仪数据进行了分析。使用现场光谱测量将数据校准为反射率。从 GERIS 数据中提取的单个和空间平均光谱用于根据其光谱特征识别明矾石、高岭石、明矾石和赤铁矿等矿物。还确定了一个反射特性类似于沸石组矿物的区域。在光谱域中对图像进行分类,以生成矿物分布的彩色编码图像图,清晰地显示热液系统的区域性质。将专题矿物图与现有的地质和蚀变图进行比较,证明了成像光谱仪在制作矿物勘探详细地图方面的实用性。使用成像光谱仪数据识别单个矿物并在空间中显示主要矿物学,可以增加可用于确定该地区形态和成因的信息。